Cargando…
JDSNMF: Joint Deep Semi-Non-Negative Matrix Factorization for Learning Integrative Representation of Molecular Signals in Alzheimer’s Disease
High dimensional multi-omics data integration can enhance our understanding of the complex biological interactions in human diseases. However, most studies involving unsupervised integration of multi-omics data focus on linear integration methods. In this study, we propose a joint deep semi-non-nega...
Autores principales: | Moon, Sehwan, Lee, Hyunju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400727/ https://www.ncbi.nlm.nih.gov/pubmed/34442330 http://dx.doi.org/10.3390/jpm11080686 |
Ejemplares similares
-
Integration of RNA molecules data with prior-knowledge driven Joint Deep Semi-Negative Matrix Factorization for heart failure study
por: Ma, Zhihui, et al.
Publicado: (2022) -
Erratum: Integration of RNA molecules data with prior-knowledge driven Joint Deep Semi-Negative Matrix Factorization for heart failure study
por: Frontiers Production Office,
Publicado: (2022) -
A Deep Non-negative Matrix Factorization Model for Big Data Representation Learning
por: Chen, Zhikui, et al.
Publicado: (2021) -
Hippocampal representations for deep learning on Alzheimer’s disease
por: Sarasua, Ignacio, et al.
Publicado: (2022) -
Correlation between Alzheimer’s disease and type 2 diabetes using non-negative matrix factorization
por: Chung, Yeonwoo, et al.
Publicado: (2021)