Cargando…
Study of the Molecule Adsorption Process during the Molecular Doping
Molecular Doping (MD) involves the deposition of molecules, containing the dopant atoms and dissolved in liquid solutions, over the surface of a semiconductor before the drive-in step. The control on the characteristics of the final doped samples resides on the in-depth study of the molecule behavio...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400913/ https://www.ncbi.nlm.nih.gov/pubmed/34443729 http://dx.doi.org/10.3390/nano11081899 |
_version_ | 1783745426262851584 |
---|---|
author | Pizzone, Mattia Grimaldi, Maria Grazia La Magna, Antonino Rahmani, Neda Scalese, Silvia Adam, Jost Puglisi, Rosaria A. |
author_facet | Pizzone, Mattia Grimaldi, Maria Grazia La Magna, Antonino Rahmani, Neda Scalese, Silvia Adam, Jost Puglisi, Rosaria A. |
author_sort | Pizzone, Mattia |
collection | PubMed |
description | Molecular Doping (MD) involves the deposition of molecules, containing the dopant atoms and dissolved in liquid solutions, over the surface of a semiconductor before the drive-in step. The control on the characteristics of the final doped samples resides on the in-depth study of the molecule behaviour once deposited. It is already known that the molecules form a self-assembled monolayer over the surface of the sample, but little is known about the role and behaviour of possible multiple layers that could be deposited on it after extended deposition times. In this work, we investigate the molecular surface coverage over time of diethyl-propyl phosphonate on silicon, by employing high-resolution morphological and electrical characterization, and examine the effects of the post-deposition surface treatments on it. We present these data together with density functional theory simulations of the molecules–substrate system and electrical measurements of the doped samples. The results allow us to recognise a difference in the bonding types involved in the formation of the molecular layers and how these influence the final doping profile of the samples. This will improve the control on the electrical properties of MD-based devices, allowing for a finer tuning of their performance. |
format | Online Article Text |
id | pubmed-8400913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84009132021-08-29 Study of the Molecule Adsorption Process during the Molecular Doping Pizzone, Mattia Grimaldi, Maria Grazia La Magna, Antonino Rahmani, Neda Scalese, Silvia Adam, Jost Puglisi, Rosaria A. Nanomaterials (Basel) Article Molecular Doping (MD) involves the deposition of molecules, containing the dopant atoms and dissolved in liquid solutions, over the surface of a semiconductor before the drive-in step. The control on the characteristics of the final doped samples resides on the in-depth study of the molecule behaviour once deposited. It is already known that the molecules form a self-assembled monolayer over the surface of the sample, but little is known about the role and behaviour of possible multiple layers that could be deposited on it after extended deposition times. In this work, we investigate the molecular surface coverage over time of diethyl-propyl phosphonate on silicon, by employing high-resolution morphological and electrical characterization, and examine the effects of the post-deposition surface treatments on it. We present these data together with density functional theory simulations of the molecules–substrate system and electrical measurements of the doped samples. The results allow us to recognise a difference in the bonding types involved in the formation of the molecular layers and how these influence the final doping profile of the samples. This will improve the control on the electrical properties of MD-based devices, allowing for a finer tuning of their performance. MDPI 2021-07-24 /pmc/articles/PMC8400913/ /pubmed/34443729 http://dx.doi.org/10.3390/nano11081899 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pizzone, Mattia Grimaldi, Maria Grazia La Magna, Antonino Rahmani, Neda Scalese, Silvia Adam, Jost Puglisi, Rosaria A. Study of the Molecule Adsorption Process during the Molecular Doping |
title | Study of the Molecule Adsorption Process during the Molecular Doping |
title_full | Study of the Molecule Adsorption Process during the Molecular Doping |
title_fullStr | Study of the Molecule Adsorption Process during the Molecular Doping |
title_full_unstemmed | Study of the Molecule Adsorption Process during the Molecular Doping |
title_short | Study of the Molecule Adsorption Process during the Molecular Doping |
title_sort | study of the molecule adsorption process during the molecular doping |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400913/ https://www.ncbi.nlm.nih.gov/pubmed/34443729 http://dx.doi.org/10.3390/nano11081899 |
work_keys_str_mv | AT pizzonemattia studyofthemoleculeadsorptionprocessduringthemoleculardoping AT grimaldimariagrazia studyofthemoleculeadsorptionprocessduringthemoleculardoping AT lamagnaantonino studyofthemoleculeadsorptionprocessduringthemoleculardoping AT rahmanineda studyofthemoleculeadsorptionprocessduringthemoleculardoping AT scalesesilvia studyofthemoleculeadsorptionprocessduringthemoleculardoping AT adamjost studyofthemoleculeadsorptionprocessduringthemoleculardoping AT puglisirosariaa studyofthemoleculeadsorptionprocessduringthemoleculardoping |