Cargando…

Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication

Adverse effects associated with synthetic drugs in diabetes therapy has prompted the search for novel natural lead compounds with little or no side effects. Effects of phenolic compounds from Carpobrotus edulis on carbohydrate-metabolizing enzymes through in vitro and in silico methods were assessed...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabiu, Saheed, Balogun, Fatai O., Amoo, Stephen O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401050/
https://www.ncbi.nlm.nih.gov/pubmed/34443458
http://dx.doi.org/10.3390/molecules26164867
_version_ 1783745460232519680
author Sabiu, Saheed
Balogun, Fatai O.
Amoo, Stephen O.
author_facet Sabiu, Saheed
Balogun, Fatai O.
Amoo, Stephen O.
author_sort Sabiu, Saheed
collection PubMed
description Adverse effects associated with synthetic drugs in diabetes therapy has prompted the search for novel natural lead compounds with little or no side effects. Effects of phenolic compounds from Carpobrotus edulis on carbohydrate-metabolizing enzymes through in vitro and in silico methods were assessed. Based on the half-maximal inhibitory concentrations (IC(50)), the phenolic extract of the plant had significant (p < 0.05) in vitro inhibitory effect on the specific activity of alpha-amylase (0.51 mg/mL), alpha-glucosidase (0.062 mg/mL) and aldose reductase (0.75 mg/mL), compared with the reference standards (0.55, 0.72 and 7.05 mg/mL, respectively). Molecular interactions established between the 11 phenolic compounds identifiable from the HPLC chromatogram of the extract and active site residues of the enzymes revealed higher binding affinity and more structural compactness with procyanidin (−69.834 ± 6.574 kcal/mol) and 1,3-dicaffeoxyl quinic acid (−42.630 ± 4.076 kcal/mol) as potential inhibitors of alpha-amylase and alpha-glucosidase, respectively, while isorhamnetin-3-O-rutinoside (−45.398 ± 4.568 kcal/mol) and luteolin-7-O-beta-d-glucoside (−45.102 ± 4.024 kcal/mol) for aldose reductase relative to respective reference standards. Put together, the findings are suggestive of the compounds as potential constituents of C. edulis phenolic extract responsible for the significant hypoglycemic effect in vitro; hence, they could be exploited in the development of novel therapeutic agents for type-2 diabetes and its retinopathy complication.
format Online
Article
Text
id pubmed-8401050
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84010502021-08-29 Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication Sabiu, Saheed Balogun, Fatai O. Amoo, Stephen O. Molecules Article Adverse effects associated with synthetic drugs in diabetes therapy has prompted the search for novel natural lead compounds with little or no side effects. Effects of phenolic compounds from Carpobrotus edulis on carbohydrate-metabolizing enzymes through in vitro and in silico methods were assessed. Based on the half-maximal inhibitory concentrations (IC(50)), the phenolic extract of the plant had significant (p < 0.05) in vitro inhibitory effect on the specific activity of alpha-amylase (0.51 mg/mL), alpha-glucosidase (0.062 mg/mL) and aldose reductase (0.75 mg/mL), compared with the reference standards (0.55, 0.72 and 7.05 mg/mL, respectively). Molecular interactions established between the 11 phenolic compounds identifiable from the HPLC chromatogram of the extract and active site residues of the enzymes revealed higher binding affinity and more structural compactness with procyanidin (−69.834 ± 6.574 kcal/mol) and 1,3-dicaffeoxyl quinic acid (−42.630 ± 4.076 kcal/mol) as potential inhibitors of alpha-amylase and alpha-glucosidase, respectively, while isorhamnetin-3-O-rutinoside (−45.398 ± 4.568 kcal/mol) and luteolin-7-O-beta-d-glucoside (−45.102 ± 4.024 kcal/mol) for aldose reductase relative to respective reference standards. Put together, the findings are suggestive of the compounds as potential constituents of C. edulis phenolic extract responsible for the significant hypoglycemic effect in vitro; hence, they could be exploited in the development of novel therapeutic agents for type-2 diabetes and its retinopathy complication. MDPI 2021-08-11 /pmc/articles/PMC8401050/ /pubmed/34443458 http://dx.doi.org/10.3390/molecules26164867 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sabiu, Saheed
Balogun, Fatai O.
Amoo, Stephen O.
Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication
title Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication
title_full Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication
title_fullStr Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication
title_full_unstemmed Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication
title_short Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication
title_sort phenolics profiling of carpobrotus edulis (l.) n.e.br. and insights into molecular dynamics of their significance in type 2 diabetes therapy and its retinopathy complication
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401050/
https://www.ncbi.nlm.nih.gov/pubmed/34443458
http://dx.doi.org/10.3390/molecules26164867
work_keys_str_mv AT sabiusaheed phenolicsprofilingofcarpobrotusedulislnebrandinsightsintomoleculardynamicsoftheirsignificanceintype2diabetestherapyanditsretinopathycomplication
AT balogunfataio phenolicsprofilingofcarpobrotusedulislnebrandinsightsintomoleculardynamicsoftheirsignificanceintype2diabetestherapyanditsretinopathycomplication
AT amoostepheno phenolicsprofilingofcarpobrotusedulislnebrandinsightsintomoleculardynamicsoftheirsignificanceintype2diabetestherapyanditsretinopathycomplication