Cargando…
A Simulation-Data-Based Machine Learning Model for Predicting Basic Parameter Settings of the Plasticizing Process in Injection Molding
The optimal machine settings in polymer processing are usually the result of time-consuming and expensive trials. We present a workflow that allows the basic machine settings for the plasticizing process in injection molding to be determined with the help of a simulation-driven machine learning mode...
Autores principales: | Schmid, Matthias, Altmann, Dominik, Steinbichler, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401074/ https://www.ncbi.nlm.nih.gov/pubmed/34451191 http://dx.doi.org/10.3390/polym13162652 |
Ejemplares similares
-
Backpressure Optimization in Foam Injection Molding: Method and Assessment of Sustainability
por: Kastner, Clemens, et al.
Publicado: (2020) -
Numerical simulation of closed plastic impeller molding process and its parameter optimization
por: Fang, Mingyue, et al.
Publicado: (2022) -
Enhanced Injection Molding Simulation of Advanced Injection Molds
por: Zink, Béla, et al.
Publicado: (2017) -
Multiple In-Mold Sensors for Quality and Process Control in Injection Molding
por: Párizs, Richárd Dominik, et al.
Publicado: (2023) -
Pressure Analysis of Dynamic Injection Molding and Process Parameter Optimization for Reducing Warpage of Injection Molded Products
por: Wang, Xinyu, et al.
Publicado: (2017)