Cargando…
Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality
BACKGROUND: Synthetic lethality describes a genetic interaction between two perturbations, leading to cell death, whereas neither event alone has a significant effect on cell viability. This concept can be exploited to specifically target tumor cells. CRISPR viability screens have been widely employ...
Autores principales: | Benfatto, Salvatore, Serçin, Özdemirhan, Dejure, Francesca R., Abdollahi, Amir, Zenke, Frank T., Mardin, Balca R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401190/ https://www.ncbi.nlm.nih.gov/pubmed/34454516 http://dx.doi.org/10.1186/s12943-021-01405-8 |
Ejemplares similares
-
A scalable CRISPR/Cas9-based fluorescent reporter assay to study DNA double-strand break repair choice
por: Roidos, Paris, et al.
Publicado: (2020) -
A solid‐phase transfection platform for arrayed CRISPR screens
por: Serçin, Özdemirhan, et al.
Publicado: (2019) -
Exploiting the metabolic dependencies of the broad amino acid transporter SLC6A14
por: Dejure, Francesca R., et al.
Publicado: (2020) -
The interplay of DNA repair context with target sequence predictably biasses Cas9-generated mutations
por: Pallaseni, Ananth, et al.
Publicado: (2023) -
Genome-wide Screens Implicate Loss of Cullin Ring Ligase 3 in Persistent Proliferation and Genome Instability in TP53-Deficient Cells
por: Drainas, Alexandros P., et al.
Publicado: (2020)