Cargando…

Enhanced Electron Heat Conduction in TaS(3) 1D Metal Wire

The 1D wire TaS(3) exhibits metallic behavior at room temperature but changes into a semiconductor below the Peierls transition temperature (T(p)), near 210 K. Using the 3ω method, we measured the thermal conductivity [Formula: see text] of TaS(3) as a function of temperature. Electrons dominate the...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Hojoon, Bahng, Jaeuk, Park, Sehwan, Dang, Dang Xuan, Sakong, Wonkil, Kang, Seungsu, Ahn, Byung-wook, Kim, Jungwon, Kim, Ki Kang, Lim, Jong Tae, Lim, Seong Chu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401328/
https://www.ncbi.nlm.nih.gov/pubmed/34442999
http://dx.doi.org/10.3390/ma14164477
_version_ 1783745525097431040
author Yi, Hojoon
Bahng, Jaeuk
Park, Sehwan
Dang, Dang Xuan
Sakong, Wonkil
Kang, Seungsu
Ahn, Byung-wook
Kim, Jungwon
Kim, Ki Kang
Lim, Jong Tae
Lim, Seong Chu
author_facet Yi, Hojoon
Bahng, Jaeuk
Park, Sehwan
Dang, Dang Xuan
Sakong, Wonkil
Kang, Seungsu
Ahn, Byung-wook
Kim, Jungwon
Kim, Ki Kang
Lim, Jong Tae
Lim, Seong Chu
author_sort Yi, Hojoon
collection PubMed
description The 1D wire TaS(3) exhibits metallic behavior at room temperature but changes into a semiconductor below the Peierls transition temperature (T(p)), near 210 K. Using the 3ω method, we measured the thermal conductivity [Formula: see text] of TaS(3) as a function of temperature. Electrons dominate the heat conduction of a metal. The Wiedemann–Franz law states that the thermal conductivity [Formula: see text] of a metal is proportional to the electrical conductivity σ with a proportional coefficient of L(0), known as the Lorenz number—that is, [Formula: see text]. Our characterization of the thermal conductivity of metallic TaS(3) reveals that, at a given temperature T, the thermal conductivity κ is much higher than the value estimated in the Wiedemann–Franz (W-F) law. The thermal conductivity of metallic TaS(3) was approximately 12 times larger than predicted by W-F law, implying [Formula: see text]. This result implies the possibility of an existing heat conduction path that the Sommerfeld theory cannot account for.
format Online
Article
Text
id pubmed-8401328
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84013282021-08-29 Enhanced Electron Heat Conduction in TaS(3) 1D Metal Wire Yi, Hojoon Bahng, Jaeuk Park, Sehwan Dang, Dang Xuan Sakong, Wonkil Kang, Seungsu Ahn, Byung-wook Kim, Jungwon Kim, Ki Kang Lim, Jong Tae Lim, Seong Chu Materials (Basel) Article The 1D wire TaS(3) exhibits metallic behavior at room temperature but changes into a semiconductor below the Peierls transition temperature (T(p)), near 210 K. Using the 3ω method, we measured the thermal conductivity [Formula: see text] of TaS(3) as a function of temperature. Electrons dominate the heat conduction of a metal. The Wiedemann–Franz law states that the thermal conductivity [Formula: see text] of a metal is proportional to the electrical conductivity σ with a proportional coefficient of L(0), known as the Lorenz number—that is, [Formula: see text]. Our characterization of the thermal conductivity of metallic TaS(3) reveals that, at a given temperature T, the thermal conductivity κ is much higher than the value estimated in the Wiedemann–Franz (W-F) law. The thermal conductivity of metallic TaS(3) was approximately 12 times larger than predicted by W-F law, implying [Formula: see text]. This result implies the possibility of an existing heat conduction path that the Sommerfeld theory cannot account for. MDPI 2021-08-10 /pmc/articles/PMC8401328/ /pubmed/34442999 http://dx.doi.org/10.3390/ma14164477 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yi, Hojoon
Bahng, Jaeuk
Park, Sehwan
Dang, Dang Xuan
Sakong, Wonkil
Kang, Seungsu
Ahn, Byung-wook
Kim, Jungwon
Kim, Ki Kang
Lim, Jong Tae
Lim, Seong Chu
Enhanced Electron Heat Conduction in TaS(3) 1D Metal Wire
title Enhanced Electron Heat Conduction in TaS(3) 1D Metal Wire
title_full Enhanced Electron Heat Conduction in TaS(3) 1D Metal Wire
title_fullStr Enhanced Electron Heat Conduction in TaS(3) 1D Metal Wire
title_full_unstemmed Enhanced Electron Heat Conduction in TaS(3) 1D Metal Wire
title_short Enhanced Electron Heat Conduction in TaS(3) 1D Metal Wire
title_sort enhanced electron heat conduction in tas(3) 1d metal wire
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401328/
https://www.ncbi.nlm.nih.gov/pubmed/34442999
http://dx.doi.org/10.3390/ma14164477
work_keys_str_mv AT yihojoon enhancedelectronheatconductionintas31dmetalwire
AT bahngjaeuk enhancedelectronheatconductionintas31dmetalwire
AT parksehwan enhancedelectronheatconductionintas31dmetalwire
AT dangdangxuan enhancedelectronheatconductionintas31dmetalwire
AT sakongwonkil enhancedelectronheatconductionintas31dmetalwire
AT kangseungsu enhancedelectronheatconductionintas31dmetalwire
AT ahnbyungwook enhancedelectronheatconductionintas31dmetalwire
AT kimjungwon enhancedelectronheatconductionintas31dmetalwire
AT kimkikang enhancedelectronheatconductionintas31dmetalwire
AT limjongtae enhancedelectronheatconductionintas31dmetalwire
AT limseongchu enhancedelectronheatconductionintas31dmetalwire