Cargando…
On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) has spread rapidly around the world. In order to prevent the spread of infection, city blockades and immigration restrictions have been introduced in each country, but these measures have a severe serious impact on the economy. This pape...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401335/ https://www.ncbi.nlm.nih.gov/pubmed/34443009 http://dx.doi.org/10.3390/ma14164486 |
_version_ | 1783745526548660224 |
---|---|
author | Mori, Kotaro Wang, Yinli Katabira, Kenichi Neyama, Daiki Onodera, Ryuichi Chiba, Daiki Watanabe, Masahito Narita, Fumio |
author_facet | Mori, Kotaro Wang, Yinli Katabira, Kenichi Neyama, Daiki Onodera, Ryuichi Chiba, Daiki Watanabe, Masahito Narita, Fumio |
author_sort | Mori, Kotaro |
collection | PubMed |
description | The severe acute respiratory syndrome coronavirus (SARS-CoV-2) has spread rapidly around the world. In order to prevent the spread of infection, city blockades and immigration restrictions have been introduced in each country, but these measures have a severe serious impact on the economy. This paper examines the possibility of both harvesting vibration energy and detecting mass by using a magnetostrictive alloy. Few efforts have been made to develop new magnetostrictive biosensor materials. Therefore, we propose magnetostrictive Fe-Co/Ni clad steel vibration energy harvesters with mass detection, and we numerically and experimentally discuss the effect of the proof mass weight on the frequency shift and output voltage induced by bending vibration. The results reveal that the frequency and output voltage decrease significantly as the mass increases, indicating that the energy harvesting device is capable of mass detection. In the future, device miniaturization and the possibility of virus detection will be considered. |
format | Online Article Text |
id | pubmed-8401335 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84013352021-08-29 On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements Mori, Kotaro Wang, Yinli Katabira, Kenichi Neyama, Daiki Onodera, Ryuichi Chiba, Daiki Watanabe, Masahito Narita, Fumio Materials (Basel) Article The severe acute respiratory syndrome coronavirus (SARS-CoV-2) has spread rapidly around the world. In order to prevent the spread of infection, city blockades and immigration restrictions have been introduced in each country, but these measures have a severe serious impact on the economy. This paper examines the possibility of both harvesting vibration energy and detecting mass by using a magnetostrictive alloy. Few efforts have been made to develop new magnetostrictive biosensor materials. Therefore, we propose magnetostrictive Fe-Co/Ni clad steel vibration energy harvesters with mass detection, and we numerically and experimentally discuss the effect of the proof mass weight on the frequency shift and output voltage induced by bending vibration. The results reveal that the frequency and output voltage decrease significantly as the mass increases, indicating that the energy harvesting device is capable of mass detection. In the future, device miniaturization and the possibility of virus detection will be considered. MDPI 2021-08-10 /pmc/articles/PMC8401335/ /pubmed/34443009 http://dx.doi.org/10.3390/ma14164486 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mori, Kotaro Wang, Yinli Katabira, Kenichi Neyama, Daiki Onodera, Ryuichi Chiba, Daiki Watanabe, Masahito Narita, Fumio On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements |
title | On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements |
title_full | On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements |
title_fullStr | On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements |
title_full_unstemmed | On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements |
title_short | On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements |
title_sort | on the possibility of developing magnetostrictive fe-co/ni clad plate with both vibration energy harvesting and mass sensing elements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401335/ https://www.ncbi.nlm.nih.gov/pubmed/34443009 http://dx.doi.org/10.3390/ma14164486 |
work_keys_str_mv | AT morikotaro onthepossibilityofdevelopingmagnetostrictivefeconicladplatewithbothvibrationenergyharvestingandmasssensingelements AT wangyinli onthepossibilityofdevelopingmagnetostrictivefeconicladplatewithbothvibrationenergyharvestingandmasssensingelements AT katabirakenichi onthepossibilityofdevelopingmagnetostrictivefeconicladplatewithbothvibrationenergyharvestingandmasssensingelements AT neyamadaiki onthepossibilityofdevelopingmagnetostrictivefeconicladplatewithbothvibrationenergyharvestingandmasssensingelements AT onoderaryuichi onthepossibilityofdevelopingmagnetostrictivefeconicladplatewithbothvibrationenergyharvestingandmasssensingelements AT chibadaiki onthepossibilityofdevelopingmagnetostrictivefeconicladplatewithbothvibrationenergyharvestingandmasssensingelements AT watanabemasahito onthepossibilityofdevelopingmagnetostrictivefeconicladplatewithbothvibrationenergyharvestingandmasssensingelements AT naritafumio onthepossibilityofdevelopingmagnetostrictivefeconicladplatewithbothvibrationenergyharvestingandmasssensingelements |