Cargando…

Molecular Evaluation of Kyoho Grape Leaf and Berry Characteristics Influenced by Different NPK Fertilizers

Fertilization, a fundamental aspect of a plant’s life, has been of great concern for agricultural specialists to minimize the yield gap between actual and potential yield. Around the globe, fertilizers with different NPK ratios are being used to attain a better yield of grape. To find the suitable c...

Descripción completa

Detalles Bibliográficos
Autores principales: Fiaz, Muhammad, Wang, Chen, Zia Ul Haq, Muhammad, Haider, Muhammad Salman, Zheng, Ting, Mengqing, Ge, Jia, Haifeng, Jiu, Songtao, Fang, Jinggui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401429/
https://www.ncbi.nlm.nih.gov/pubmed/34451623
http://dx.doi.org/10.3390/plants10081578
Descripción
Sumario:Fertilization, a fundamental aspect of a plant’s life, has been of great concern for agricultural specialists to minimize the yield gap between actual and potential yield. Around the globe, fertilizers with different NPK ratios are being used to attain a better yield of grape. To find the suitable commercially available fertilizer for quality grape production, a 2 years (2017–2018) study was conducted for the evaluation of 10 fertilizers with different NPK ratios. Commercial fertilizers included were Zhanlan (16:16:16), Garsoni (15:15:15), Acron (16:16:16), Norway (21:7:12), Peters 1 (30:10:10), Nutrivant (14:14:30), Peters 2 (20:20:20), UMAX (15:15:15), G2 (20:20:20), and Yara (15:15:15). The fertilizer application rate was 20 g plant(−1), and each was applied at L-29, L-33, and L-36 phenological stages. Chlorophylls, carotenoids, macro/micronutrients in leaf, and anthocyanin derivatives in grape peel were evaluated. Expression levels of 24 genes, including nitrogen, phosphorous, potassium, and anthocyanin pathways in leaf, peel, and pulp were validated by qPCR at L-29, L-33, and L-36 stages. Results indicated that Norway (21:7:12) and Peters 1 (30:10:10) increased carotenoids, chlorophylls, and anthocyanins in leaves, while Zhanlan (16:16:16) improved fruit biochemical attributes, and anthocyanin (cyanidin, delphinidin, petunidin, malvidin, peonidin, and pelargonidin contents). However, a better grape yield was obtained by the application of Peters 1 (30:10:10). Potassium pathway genes were upregulated by Nutrivant (14:14:30), phosphorous pathway genes by Peters 2 (20:20:20), and nitrogen pathway genes by Peters 1 (30:10:10), while Nutrivant (14:14:30) upregulated anthocyanin pathway genes and simultaneously enhanced anthocyanin biosynthesis in berry peels. Results of two years’ study concluded that Peters 1 (30:10:10) was proved better to increase yield, while Zhanlan (14:14:30) was superior in improving anthocyanin biosynthesis.