Cargando…
Adsorption Hysteresis in Open Slit-like Micropores
Adsorption hysteresis in the low-pressure range is only rarely described in the literature. To optimise, for example, heat storage technologies, a deeper understanding of the low-pressure hysteresis (LPH) process is necessary. Here, two thermodynamically based approaches are further developed for an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401450/ https://www.ncbi.nlm.nih.gov/pubmed/34443662 http://dx.doi.org/10.3390/molecules26165074 |
Sumario: | Adsorption hysteresis in the low-pressure range is only rarely described in the literature. To optimise, for example, heat storage technologies, a deeper understanding of the low-pressure hysteresis (LPH) process is necessary. Here, two thermodynamically based approaches are further developed for analysing the LPH within the framework of thermodynamically irreversible processes and fractal geometry. With both methods developed, it is possible to obtain the description of the adsorption and desorption branches with high accuracy. Within the framework of the two thermodynamic models of the hysteresis loop, generalised equations are obtained with the control parameter in the form of the degree of irreversibility. This is done by taking the adsorption of water on alumina as an example. It is shown that the fractal dimension of the adsorption process is larger than the fractal dimension of the desorption branch, meaning that the phase state of the adsorbate is more symmetric during the adsorption step than in the desorption process. |
---|