Cargando…
Analysis on Microstructure–Property Linkages of Filled Rubber Using Machine Learning and Molecular Dynamics Simulations
A better understanding of the microstructure–property relationship can be achieved by sampling and analyzing a microstructure leading to a desired material property. During the simulation of filled rubber, this approach includes extracting common aggregates from a complex filler morphology consistin...
Autores principales: | Kojima, Takashi, Washio, Takashi, Hara, Satoshi, Koishi, Masataka, Amino, Naoya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401526/ https://www.ncbi.nlm.nih.gov/pubmed/34451223 http://dx.doi.org/10.3390/polym13162683 |
Ejemplares similares
-
Synthesis of computer simulation and machine learning for achieving the best material properties of filled rubber
por: Kojima, Takashi, et al.
Publicado: (2020) -
In
Situ Nanostress Visualization Method to Reveal
the Micromechanical Mechanism of Nanocomposites by Atomic Force Microscopy
por: Liang, Xiaobin, et al.
Publicado: (2023) -
The aging properties and phase morphology of silica filled silicone rubber/butadiene rubber composites
por: Leng, Lin, et al.
Publicado: (2020) -
Mechanical Properties of Natural Rubber Filled with Foundry Waste Derived Fillers
por: Xie, Ting, et al.
Publicado: (2019) -
Molecule Dynamics Simulation of the Effect of Oxidative Aging on Properties of Nitrile Rubber
por: Yang, Jinsong, et al.
Publicado: (2022)