Cargando…

Modified Molecular Chain Displacement Analysis Employing Electro-Mechanical Threshold Energy Condition for Direct Current Breakdown of Low-Density Polyethylene

In an HVDC environment, space charge accumulated in polymeric insulators causes severe electric field distortion and degradation of breakdown strength. To analyze the breakdown characteristics, here, the space charge distribution was numerically evaluated using the bipolar charge transport (BCT) mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Minhee, Lee, Se-Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401579/
https://www.ncbi.nlm.nih.gov/pubmed/34451288
http://dx.doi.org/10.3390/polym13162746
Descripción
Sumario:In an HVDC environment, space charge accumulated in polymeric insulators causes severe electric field distortion and degradation of breakdown strength. To analyze the breakdown characteristics, here, the space charge distribution was numerically evaluated using the bipolar charge transport (BCT) model, considering the temperature gradient inside the polymeric insulator. In particular, we proposed an electro-mechanical threshold energy condition, resulting in the modified molecular chain displacement model. The temperature gradient accelerates to reduce the breakdown strength with the polarity-reversal voltage, except during the harshest condition, when the temperature of the entire polymeric insulator was 70 °C. The energy imbalance inside the insulator caused by polarity-reversal voltage reduced the breakdown strength by 82%. Finally, this numerical analysis model can be used universally to predict the breakdown strength of polymeric insulators in various environments, and help in evaluating the electrical performance of polymeric insulators.