Cargando…

Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer [Formula: see text]

Magnetic two-dimensional (2D) van der Waals materials have attracted tremendous attention because of their high potential in spintronics. In particular, the quantum anomalous Hall (QAH) effect in magnetic 2D layers shows a very promising prospect for hosting Majorana zero modes at the topologically...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Angus, Chen, Chin-Hsuan, Chang, Ching-Hao, Jeng, Horng-Tay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401610/
https://www.ncbi.nlm.nih.gov/pubmed/34443830
http://dx.doi.org/10.3390/nano11081998
_version_ 1783745591482777600
author Huang, Angus
Chen, Chin-Hsuan
Chang, Ching-Hao
Jeng, Horng-Tay
author_facet Huang, Angus
Chen, Chin-Hsuan
Chang, Ching-Hao
Jeng, Horng-Tay
author_sort Huang, Angus
collection PubMed
description Magnetic two-dimensional (2D) van der Waals materials have attracted tremendous attention because of their high potential in spintronics. In particular, the quantum anomalous Hall (QAH) effect in magnetic 2D layers shows a very promising prospect for hosting Majorana zero modes at the topologically protected edge states in proximity to superconductors. However, the QAH effect has not yet been experimentally realized in monolayer systems to date. In this work, we study the electronic structures and topological properties of the 2D ferromagnetic transition-metal dichalcogenides (TMD) monolayer [Formula: see text] by first-principles calculations with the Heyd–Scuseria–Ernzerhof (HSE) functional. We find that the spin-orbit coupling (SOC) opens a continuous band gap at the magnetic Weyl-like crossing point hosting the quantum anomalous Hall effect with Chern number [Formula: see text]. Moreover, we demonstrate the topologically protected edge states and intrinsic (spin) Hall conductivity in this magnetic 2D TMD system. Our results indicate that [Formula: see text] monolayer serves as a stoichiometric quantum anomalous Hall material.
format Online
Article
Text
id pubmed-8401610
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84016102021-08-29 Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer [Formula: see text] Huang, Angus Chen, Chin-Hsuan Chang, Ching-Hao Jeng, Horng-Tay Nanomaterials (Basel) Article Magnetic two-dimensional (2D) van der Waals materials have attracted tremendous attention because of their high potential in spintronics. In particular, the quantum anomalous Hall (QAH) effect in magnetic 2D layers shows a very promising prospect for hosting Majorana zero modes at the topologically protected edge states in proximity to superconductors. However, the QAH effect has not yet been experimentally realized in monolayer systems to date. In this work, we study the electronic structures and topological properties of the 2D ferromagnetic transition-metal dichalcogenides (TMD) monolayer [Formula: see text] by first-principles calculations with the Heyd–Scuseria–Ernzerhof (HSE) functional. We find that the spin-orbit coupling (SOC) opens a continuous band gap at the magnetic Weyl-like crossing point hosting the quantum anomalous Hall effect with Chern number [Formula: see text]. Moreover, we demonstrate the topologically protected edge states and intrinsic (spin) Hall conductivity in this magnetic 2D TMD system. Our results indicate that [Formula: see text] monolayer serves as a stoichiometric quantum anomalous Hall material. MDPI 2021-08-04 /pmc/articles/PMC8401610/ /pubmed/34443830 http://dx.doi.org/10.3390/nano11081998 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Huang, Angus
Chen, Chin-Hsuan
Chang, Ching-Hao
Jeng, Horng-Tay
Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer [Formula: see text]
title Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer [Formula: see text]
title_full Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer [Formula: see text]
title_fullStr Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer [Formula: see text]
title_full_unstemmed Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer [Formula: see text]
title_short Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer [Formula: see text]
title_sort topological phase and quantum anomalous hall effect in ferromagnetic transition-metal dichalcogenides monolayer [formula: see text]
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401610/
https://www.ncbi.nlm.nih.gov/pubmed/34443830
http://dx.doi.org/10.3390/nano11081998
work_keys_str_mv AT huangangus topologicalphaseandquantumanomaloushalleffectinferromagnetictransitionmetaldichalcogenidesmonolayerformulaseetext
AT chenchinhsuan topologicalphaseandquantumanomaloushalleffectinferromagnetictransitionmetaldichalcogenidesmonolayerformulaseetext
AT changchinghao topologicalphaseandquantumanomaloushalleffectinferromagnetictransitionmetaldichalcogenidesmonolayerformulaseetext
AT jenghorngtay topologicalphaseandquantumanomaloushalleffectinferromagnetictransitionmetaldichalcogenidesmonolayerformulaseetext