Cargando…
Pulmonary COVID-19: Learning Spatiotemporal Features Combining CNN and LSTM Networks for Lung Ultrasound Video Classification
Deep Learning is a very active and important area for building Computer-Aided Diagnosis (CAD) applications. This work aims to present a hybrid model to classify lung ultrasound (LUS) videos captured by convex transducers to diagnose COVID-19. A Convolutional Neural Network (CNN) performed the extrac...
Autores principales: | Barros, Bruno, Lacerda, Paulo, Albuquerque, Célio, Conci, Aura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401701/ https://www.ncbi.nlm.nih.gov/pubmed/34450928 http://dx.doi.org/10.3390/s21165486 |
Ejemplares similares
-
Hyperparameter Optimization for COVID-19 Pneumonia Diagnosis Based on Chest CT
por: Lacerda, Paulo, et al.
Publicado: (2021) -
A Deep CNN-LSTM Framework for Fast Video Coding
por: Bouaafia, Soulef, et al.
Publicado: (2020) -
CNN-LSTM Hybrid Model for Kinematic Feature Analysis and Parabolic Radian Prediction in Basketball Videos
por: Rong, Ji, et al.
Publicado: (2021) -
CNN-Bi-LSTM: A Complex Environment-Oriented Cattle Behavior Classification Network Based on the Fusion of CNN and Bi-LSTM
por: Gao, Guohong, et al.
Publicado: (2023) -
Facial expression recognition in videos using hybrid CNN & ConvLSTM
por: Singh, Rajesh, et al.
Publicado: (2023)