Cargando…
MSST-RT: Multi-Stream Spatial-Temporal Relative Transformer for Skeleton-Based Action Recognition
Skeleton-based human action recognition has made great progress, especially with the development of a graph convolution network (GCN). The most important work is ST-GCN, which automatically learns both spatial and temporal patterns from skeleton sequences. However, this method still has some imperfe...
Autores principales: | Sun, Yan, Shen, Yixin, Ma, Liyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401804/ https://www.ncbi.nlm.nih.gov/pubmed/34450781 http://dx.doi.org/10.3390/s21165339 |
Ejemplares similares
-
Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
por: Li, Fanjia, et al.
Publicado: (2020) -
Skeleton-Based Emotion Recognition Based on Two-Stream Self-Attention Enhanced Spatial-Temporal Graph Convolutional Network
por: Shi, Jiaqi, et al.
Publicado: (2020) -
Skeleton Driven Action Recognition Using an Image-Based Spatial-Temporal Representation and Convolution Neural Network
por: Silva, Vinícius, et al.
Publicado: (2021) -
Fast Temporal Graph Convolutional Model for Skeleton-Based Action Recognition
por: Nan, Mihai, et al.
Publicado: (2022) -
Shock response of condensed-phase RDX: molecular dynamics simulations in conjunction with the MSST method
por: Ge, Ni-Na, et al.
Publicado: (2018)