Cargando…
Performance and Cost-Effectiveness of Short Pitch-Based Carbon Fiber Reinforced Mortar Composite
This paper discusses the performance of the short pitch-based carbon fiber reinforced mortar (CFRM) composite considering its key properties and cost-effectiveness. Five different types of mortar composite were produced using 0–4% volume contents of short pitch-based carbon fibers. The mortar compos...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401840/ https://www.ncbi.nlm.nih.gov/pubmed/34443214 http://dx.doi.org/10.3390/ma14164693 |
_version_ | 1783745646093664256 |
---|---|
author | Safiuddin, Md. Abdel-Sayed, George Hearn, Nataliya |
author_facet | Safiuddin, Md. Abdel-Sayed, George Hearn, Nataliya |
author_sort | Safiuddin, Md. |
collection | PubMed |
description | This paper discusses the performance of the short pitch-based carbon fiber reinforced mortar (CFRM) composite considering its key properties and cost-effectiveness. Five different types of mortar composite were produced using 0–4% volume contents of short pitch-based carbon fibers. The mortar composites were tested for inverted slump cone flow (flow time and volume flow), unit weight, air content, compressive strength, flexural strength, impact resistance, and water absorption. The cost-effectiveness of CFRM was assessed based on the performance to cost ratio (PCR), which was calculated for each mortar composite, considering its workability, mechanical properties, and durability. The inverted slump cone volume flow was counted as a measure of workability, whereas the compressive strength, flexural strength, and impact resistance were considered as the major attributes of the mechanical behavior. In addition, the water absorption was used as a measure of durability. The test results revealed that the mortar composite made with 3% carbon fibers provided adequate workability, a relatively high unit weight and low air content, the highest compressive strength, excellent flexural strength, good impact resistance, and the lowest water absorption. It was also found that the PCR increased up to 3% carbon fibers. Beyond a 3% fiber content, the PCR significantly decreased. The overall research findings revealed that the mortar with 3% carbon fibers was the optimum and most cost-effective mortar composite. |
format | Online Article Text |
id | pubmed-8401840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84018402021-08-29 Performance and Cost-Effectiveness of Short Pitch-Based Carbon Fiber Reinforced Mortar Composite Safiuddin, Md. Abdel-Sayed, George Hearn, Nataliya Materials (Basel) Article This paper discusses the performance of the short pitch-based carbon fiber reinforced mortar (CFRM) composite considering its key properties and cost-effectiveness. Five different types of mortar composite were produced using 0–4% volume contents of short pitch-based carbon fibers. The mortar composites were tested for inverted slump cone flow (flow time and volume flow), unit weight, air content, compressive strength, flexural strength, impact resistance, and water absorption. The cost-effectiveness of CFRM was assessed based on the performance to cost ratio (PCR), which was calculated for each mortar composite, considering its workability, mechanical properties, and durability. The inverted slump cone volume flow was counted as a measure of workability, whereas the compressive strength, flexural strength, and impact resistance were considered as the major attributes of the mechanical behavior. In addition, the water absorption was used as a measure of durability. The test results revealed that the mortar composite made with 3% carbon fibers provided adequate workability, a relatively high unit weight and low air content, the highest compressive strength, excellent flexural strength, good impact resistance, and the lowest water absorption. It was also found that the PCR increased up to 3% carbon fibers. Beyond a 3% fiber content, the PCR significantly decreased. The overall research findings revealed that the mortar with 3% carbon fibers was the optimum and most cost-effective mortar composite. MDPI 2021-08-20 /pmc/articles/PMC8401840/ /pubmed/34443214 http://dx.doi.org/10.3390/ma14164693 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Safiuddin, Md. Abdel-Sayed, George Hearn, Nataliya Performance and Cost-Effectiveness of Short Pitch-Based Carbon Fiber Reinforced Mortar Composite |
title | Performance and Cost-Effectiveness of Short Pitch-Based Carbon Fiber Reinforced Mortar Composite |
title_full | Performance and Cost-Effectiveness of Short Pitch-Based Carbon Fiber Reinforced Mortar Composite |
title_fullStr | Performance and Cost-Effectiveness of Short Pitch-Based Carbon Fiber Reinforced Mortar Composite |
title_full_unstemmed | Performance and Cost-Effectiveness of Short Pitch-Based Carbon Fiber Reinforced Mortar Composite |
title_short | Performance and Cost-Effectiveness of Short Pitch-Based Carbon Fiber Reinforced Mortar Composite |
title_sort | performance and cost-effectiveness of short pitch-based carbon fiber reinforced mortar composite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401840/ https://www.ncbi.nlm.nih.gov/pubmed/34443214 http://dx.doi.org/10.3390/ma14164693 |
work_keys_str_mv | AT safiuddinmd performanceandcosteffectivenessofshortpitchbasedcarbonfiberreinforcedmortarcomposite AT abdelsayedgeorge performanceandcosteffectivenessofshortpitchbasedcarbonfiberreinforcedmortarcomposite AT hearnnataliya performanceandcosteffectivenessofshortpitchbasedcarbonfiberreinforcedmortarcomposite |