Cargando…
Deep Learning on Construction Sites: A Case Study of Sparse Data Learning Techniques for Rebar Segmentation
Recent advances in deep learning models for image interpretation finally made it possible to automate construction site monitoring processes that rely on remote sensing. However, the major drawback of these models is their dependency on large datasets of training images labeled at pixel level, which...
Autores principales: | Cuypers, Suzanna, Bassier, Maarten, Vergauwen, Maarten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401869/ https://www.ncbi.nlm.nih.gov/pubmed/34450870 http://dx.doi.org/10.3390/s21165428 |
Ejemplares similares
-
MaskID: An effective deep-learning-based algorithm for dense rebar counting
por: Li, Wenrui, et al.
Publicado: (2023) -
Deep learning for photoacoustic tomography from sparse data
por: Antholzer, Stephan, et al.
Publicado: (2018) -
Rebar Graphene
por: Yan, Zheng, et al.
Publicado: (2014) -
Deep-Learning-Based Segmentation of Fresh or Young Concrete Sections from Images of Construction Sites
por: Mesfin, Woldeamanuel Minwuye, et al.
Publicado: (2021) -
A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
por: Chlis, Nikolaos-Kosmas, et al.
Publicado: (2020)