Cargando…
The Molecular Mechanism of the Formation of Four-Membered Cyclic Nitronates and Their Retro (3 + 2) Cycloaddition: A DFT Mechanistic Study
In the present work, the formation of the four-membered cyclic nitronates and the retro (3 + 2) cycloaddition (retro-32CA) reaction of the 4H-[1,2]oxazete 2-oxide were studied using the density functional theory method at the MPWB1K/6-311G(d,p) theoretical level. The electronic structure of 3-tert-b...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401889/ https://www.ncbi.nlm.nih.gov/pubmed/34443373 http://dx.doi.org/10.3390/molecules26164786 |
Sumario: | In the present work, the formation of the four-membered cyclic nitronates and the retro (3 + 2) cycloaddition (retro-32CA) reaction of the 4H-[1,2]oxazete 2-oxide were studied using the density functional theory method at the MPWB1K/6-311G(d,p) theoretical level. The electronic structure of 3-tert-butyl-4,4-dimethyl-1,2-dinitro-pent-2-ene was known through electron localization function analysis, natural population analysis, and molecular electrostatic potential analysis. The formation of 4,4-di-tert-butyl-3-nitromethyl-4H-[1,2]oxazete 2-oxide proceeds through a one-step mechanism. The mechanism of the retro-32CA leading to di-tert-butyl ketone and nitrile oxide derivative should be described as an asynchronous two-stage one-step process. The bonding evolution theory study was carried out to clarify the mechanisms of the formation of 4H-[1,2]oxazete 2-oxide and their retro-32CA. |
---|