Cargando…
Road to Acquisition: Preparing a MEMS Microphone Array for Measurement of Fuselage Surface Pressure Fluctuations
Preparing and pre-testing experimental setups for flight tests is a lengthy but necessary task. One part of this preparation is comparing newly available measurement technology with proven setups. In our case, we wanted to compare acoustic Micro-Electro-Mechanical Systems (MEMS) to large and proven...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401940/ https://www.ncbi.nlm.nih.gov/pubmed/34442583 http://dx.doi.org/10.3390/mi12080961 |
Sumario: | Preparing and pre-testing experimental setups for flight tests is a lengthy but necessary task. One part of this preparation is comparing newly available measurement technology with proven setups. In our case, we wanted to compare acoustic Micro-Electro-Mechanical Systems (MEMS) to large and proven surface-mounted condenser microphones. The task started with the comparison of spectra in low-speed wind tunnel environments. After successful completion, the challenge was increased to similar comparisons in a transonic wind tunnel. The final goal of performing in-flight measurements on the outside fuselage of a twin-engine turboprop aircraft was eventually achieved using a slim array of 45 MEMS microphones with additional large microphones installed on the same carrier to drawn on for comparison. Finally, the array arrangement of MEMS microphones allowed for a complex study of fuselage surface pressure fluctuations in the wavenumber domain. The study indicates that MEMS microphones are an inexpensive alternative to conventional microphones with increased potential for spatially high-resolved measurements even at challenging experimental conditions during flight tests. |
---|