Cargando…
Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures
Cellulose nanofiber (CNF) as a bio-based reinforcement has attracted tremendous interests in engineering polymer composites. This study developed a sustainable approach to reinforce polyamide-6 or nylon-6 (PA6) with CNFs through solvent casting in formic acid/water mixtures. The methodology provides...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401965/ https://www.ncbi.nlm.nih.gov/pubmed/34443955 http://dx.doi.org/10.3390/nano11082127 |
_version_ | 1783745675606884352 |
---|---|
author | Sridhara, Pruthvi K. Masso, Ferran Olsén, Peter Vilaseca, Fabiola |
author_facet | Sridhara, Pruthvi K. Masso, Ferran Olsén, Peter Vilaseca, Fabiola |
author_sort | Sridhara, Pruthvi K. |
collection | PubMed |
description | Cellulose nanofiber (CNF) as a bio-based reinforcement has attracted tremendous interests in engineering polymer composites. This study developed a sustainable approach to reinforce polyamide-6 or nylon-6 (PA6) with CNFs through solvent casting in formic acid/water mixtures. The methodology provides an energy-efficient pathway towards well-dispersed high-CNF content PA6 biocomposites. Nanocomposite formulations up to 50 wt.% of CNFs were prepared, and excellent improvements in the tensile properties were observed, with an increase in the elastic modulus from 1.5 to 4.2 GPa, and in the tensile strength from 46.3 to 124 MPa. The experimental tensile values were compared with the analytical values obtained by micromechanical models. Fractured surfaces were observed using scanning electron microscopy to examine the interface morphology. FTIR revealed strong hydrogen bonding at the interface, and the thermal parameters were determined using TGA and DSC, where the nanocomposites’ crystallinity tended to reduce with the increase in the CNF content. In addition, nanocomposites showed good thermomechanical stability for all formulations. Overall, this work provides a facile fabrication pathway for high-CNF content nanocomposites of PA6 for high-performance and advanced material applications. |
format | Online Article Text |
id | pubmed-8401965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84019652021-08-29 Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures Sridhara, Pruthvi K. Masso, Ferran Olsén, Peter Vilaseca, Fabiola Nanomaterials (Basel) Article Cellulose nanofiber (CNF) as a bio-based reinforcement has attracted tremendous interests in engineering polymer composites. This study developed a sustainable approach to reinforce polyamide-6 or nylon-6 (PA6) with CNFs through solvent casting in formic acid/water mixtures. The methodology provides an energy-efficient pathway towards well-dispersed high-CNF content PA6 biocomposites. Nanocomposite formulations up to 50 wt.% of CNFs were prepared, and excellent improvements in the tensile properties were observed, with an increase in the elastic modulus from 1.5 to 4.2 GPa, and in the tensile strength from 46.3 to 124 MPa. The experimental tensile values were compared with the analytical values obtained by micromechanical models. Fractured surfaces were observed using scanning electron microscopy to examine the interface morphology. FTIR revealed strong hydrogen bonding at the interface, and the thermal parameters were determined using TGA and DSC, where the nanocomposites’ crystallinity tended to reduce with the increase in the CNF content. In addition, nanocomposites showed good thermomechanical stability for all formulations. Overall, this work provides a facile fabrication pathway for high-CNF content nanocomposites of PA6 for high-performance and advanced material applications. MDPI 2021-08-20 /pmc/articles/PMC8401965/ /pubmed/34443955 http://dx.doi.org/10.3390/nano11082127 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sridhara, Pruthvi K. Masso, Ferran Olsén, Peter Vilaseca, Fabiola Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures |
title | Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures |
title_full | Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures |
title_fullStr | Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures |
title_full_unstemmed | Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures |
title_short | Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures |
title_sort | strong polyamide-6 nanocomposites with cellulose nanofibers mediated by green solvent mixtures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401965/ https://www.ncbi.nlm.nih.gov/pubmed/34443955 http://dx.doi.org/10.3390/nano11082127 |
work_keys_str_mv | AT sridharapruthvik strongpolyamide6nanocompositeswithcellulosenanofibersmediatedbygreensolventmixtures AT massoferran strongpolyamide6nanocompositeswithcellulosenanofibersmediatedbygreensolventmixtures AT olsenpeter strongpolyamide6nanocompositeswithcellulosenanofibersmediatedbygreensolventmixtures AT vilasecafabiola strongpolyamide6nanocompositeswithcellulosenanofibersmediatedbygreensolventmixtures |