Cargando…

Air-Gap Interrogation of Surface Plasmon Resonance in Otto Configuration

In this study, a micromachined chip in Otto configuration with multiple air-gaps (1.86 μm, 2.42 μm, 3.01 μm, 3.43 μm) was fabricated, and the resonance characteristics for each air-gap was measured with a 980 nm laser source. To verify the variability of the reflectance characteristics of the Otto c...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Yeonsu, Kim, Jiwon, Sim, Sungmin, Llamas-Garro, Ignacio, Kim, Jungmu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401980/
https://www.ncbi.nlm.nih.gov/pubmed/34442620
http://dx.doi.org/10.3390/mi12080998
Descripción
Sumario:In this study, a micromachined chip in Otto configuration with multiple air-gaps (1.86 μm, 2.42 μm, 3.01 μm, 3.43 μm) was fabricated, and the resonance characteristics for each air-gap was measured with a 980 nm laser source. To verify the variability of the reflectance characteristics of the Otto configuration and its applicability to multiple gas detection, the air-gap between the prism and metal film was adjusted by using a commercial piezoactuator. We experimentally verified that the SPR characteristics of the Otto chip configuration have a dependence on the air-gap distance and wavelength of the incident light. When a light source having a wavelength of 977 nm is used, the minimum reflectance becomes 0.22 when the displacement of the piezoactuator is about 9.3 μm.