Cargando…
Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia
Muscle wasting and cachexia are prominent comorbidities in cancer. Treatment with polyphenolic compounds may partly revert muscle wasting. We hypothesized that treatment with curcumin or resveratrol in cancer cachectic mice may improve muscle phenotype and total body weight through attenuation of se...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402048/ https://www.ncbi.nlm.nih.gov/pubmed/34443492 http://dx.doi.org/10.3390/molecules26164904 |
_version_ | 1783745695318016000 |
---|---|
author | Penedo-Vázquez, Antonio Duran, Xavier Mateu, Javier López-Postigo, Adrián Barreiro, Esther |
author_facet | Penedo-Vázquez, Antonio Duran, Xavier Mateu, Javier López-Postigo, Adrián Barreiro, Esther |
author_sort | Penedo-Vázquez, Antonio |
collection | PubMed |
description | Muscle wasting and cachexia are prominent comorbidities in cancer. Treatment with polyphenolic compounds may partly revert muscle wasting. We hypothesized that treatment with curcumin or resveratrol in cancer cachectic mice may improve muscle phenotype and total body weight through attenuation of several proteolytic and signaling mechanisms in limb muscles. In gastrocnemius and soleus muscles of cancer cachectic mice (LP07 adenocarcinoma cells, N = 10/group): (1) LC-induced cachexia, (2) LC-cachexia+curcumin, and (3) LC-cachexia + resveratrol, muscle structure and damage (including blood troponin I), sirtuin-1, proteolytic markers, and signaling pathways (NF-κB and FoxO3) were explored (immunohistochemistry and immunoblotting). Compared to nontreated cachectic mice, in LC-cachexia + curcumin and LC-cachexia + resveratrol groups, body and muscle weights (gastrocnemius), limb muscle strength, muscle damage, and myofiber cross-sectional area improved, and in both muscles, sirtuin-1 increased, while proteolysis (troponin I), proteolytic markers, and signaling pathways were attenuated. Curcumin and resveratrol elicited beneficial effects on fast- and slow-twitch limb muscle phenotypes in cachectic mice through sirtuin-1 activation, attenuation of atrophy signaling pathways, and proteolysis in cancer cachectic mice. These findings have future therapeutic implications as these natural compounds, separately or in combination, may be used in clinical settings of muscle mass loss and dysfunction including cancer cachexia. |
format | Online Article Text |
id | pubmed-8402048 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84020482021-08-29 Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia Penedo-Vázquez, Antonio Duran, Xavier Mateu, Javier López-Postigo, Adrián Barreiro, Esther Molecules Article Muscle wasting and cachexia are prominent comorbidities in cancer. Treatment with polyphenolic compounds may partly revert muscle wasting. We hypothesized that treatment with curcumin or resveratrol in cancer cachectic mice may improve muscle phenotype and total body weight through attenuation of several proteolytic and signaling mechanisms in limb muscles. In gastrocnemius and soleus muscles of cancer cachectic mice (LP07 adenocarcinoma cells, N = 10/group): (1) LC-induced cachexia, (2) LC-cachexia+curcumin, and (3) LC-cachexia + resveratrol, muscle structure and damage (including blood troponin I), sirtuin-1, proteolytic markers, and signaling pathways (NF-κB and FoxO3) were explored (immunohistochemistry and immunoblotting). Compared to nontreated cachectic mice, in LC-cachexia + curcumin and LC-cachexia + resveratrol groups, body and muscle weights (gastrocnemius), limb muscle strength, muscle damage, and myofiber cross-sectional area improved, and in both muscles, sirtuin-1 increased, while proteolysis (troponin I), proteolytic markers, and signaling pathways were attenuated. Curcumin and resveratrol elicited beneficial effects on fast- and slow-twitch limb muscle phenotypes in cachectic mice through sirtuin-1 activation, attenuation of atrophy signaling pathways, and proteolysis in cancer cachectic mice. These findings have future therapeutic implications as these natural compounds, separately or in combination, may be used in clinical settings of muscle mass loss and dysfunction including cancer cachexia. MDPI 2021-08-13 /pmc/articles/PMC8402048/ /pubmed/34443492 http://dx.doi.org/10.3390/molecules26164904 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Penedo-Vázquez, Antonio Duran, Xavier Mateu, Javier López-Postigo, Adrián Barreiro, Esther Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia |
title | Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia |
title_full | Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia |
title_fullStr | Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia |
title_full_unstemmed | Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia |
title_short | Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia |
title_sort | curcumin and resveratrol improve muscle function and structure through attenuation of proteolytic markers in experimental cancer-induced cachexia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402048/ https://www.ncbi.nlm.nih.gov/pubmed/34443492 http://dx.doi.org/10.3390/molecules26164904 |
work_keys_str_mv | AT penedovazquezantonio curcuminandresveratrolimprovemusclefunctionandstructurethroughattenuationofproteolyticmarkersinexperimentalcancerinducedcachexia AT duranxavier curcuminandresveratrolimprovemusclefunctionandstructurethroughattenuationofproteolyticmarkersinexperimentalcancerinducedcachexia AT mateujavier curcuminandresveratrolimprovemusclefunctionandstructurethroughattenuationofproteolyticmarkersinexperimentalcancerinducedcachexia AT lopezpostigoadrian curcuminandresveratrolimprovemusclefunctionandstructurethroughattenuationofproteolyticmarkersinexperimentalcancerinducedcachexia AT barreiroesther curcuminandresveratrolimprovemusclefunctionandstructurethroughattenuationofproteolyticmarkersinexperimentalcancerinducedcachexia |