Cargando…

Innovative Textiles Used in Face Masks: Filtration Efficiency and Self-Disinfecting Properties against Coronaviruses

Within the current SARS-CoV-2 pandemic, personal protective equipment, including face masks, is one important tool to interrupt virus transmission chains within the community. In this context, the quality of different face masks is frequently discussed and should, therefore, be evaluated. In this st...

Descripción completa

Detalles Bibliográficos
Autores principales: Siller, Paul, Reissner, Janina, Hansen, Sabrina, Kühl, Michael, Bartel, Alexander, Schmelzeisen, David, Gries, Thomas, Roesler, Uwe, Friese, Anika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402066/
https://www.ncbi.nlm.nih.gov/pubmed/34443918
http://dx.doi.org/10.3390/nano11082088
Descripción
Sumario:Within the current SARS-CoV-2 pandemic, personal protective equipment, including face masks, is one important tool to interrupt virus transmission chains within the community. In this context, the quality of different face masks is frequently discussed and should, therefore, be evaluated. In this study, nanofleece textiles with a particle filtering effect and textiles with a self-disinfecting treatment were examined, which may be combined in face masks. Firstly, newly developed nanofleece textiles were tested regarding their filtration efficiency against airborne coronavirus, using feline coronavirus (FCoV) as a surrogate for SARS-CoV-2. The tested nanofleece textiles showed filtration efficiencies of over 95% against FCoV when used as a double layer and were, therefore, almost on par with the FFP-2 mask material, which was used as a reference. Secondly, eight treated, self-disinfecting textiles, which may increase the safety in the handling of potentially contaminated masks, were tested against SARS-CoV-2. Three out of eight treated textiles showed significant activity against SARS-CoV-2 and achieved about three LOG(10) (99.9%) of virus titer reduction after twelve hours of incubation. Since all possible transmission paths of SARS-CoV-2, as well as the minimal infection doses, remain unknown, both investigated approaches seem to be useful tools to lower the virus spread within the community.