Cargando…
Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm
We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol co...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402182/ https://www.ncbi.nlm.nih.gov/pubmed/34451237 http://dx.doi.org/10.3390/polym13162697 |
_version_ | 1783745727120277504 |
---|---|
author | Owolabi, Taoreed O. Abd Rahman, Mohd Amiruddin |
author_facet | Owolabi, Taoreed O. Abd Rahman, Mohd Amiruddin |
author_sort | Owolabi, Taoreed O. |
collection | PubMed |
description | We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced. |
format | Online Article Text |
id | pubmed-8402182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84021822021-08-29 Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm Owolabi, Taoreed O. Abd Rahman, Mohd Amiruddin Polymers (Basel) Article We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced. MDPI 2021-08-12 /pmc/articles/PMC8402182/ /pubmed/34451237 http://dx.doi.org/10.3390/polym13162697 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Owolabi, Taoreed O. Abd Rahman, Mohd Amiruddin Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm |
title | Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm |
title_full | Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm |
title_fullStr | Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm |
title_full_unstemmed | Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm |
title_short | Modeling the Optical Properties of a Polyvinyl Alcohol-Based Composite Using a Particle Swarm Optimized Support Vector Regression Algorithm |
title_sort | modeling the optical properties of a polyvinyl alcohol-based composite using a particle swarm optimized support vector regression algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402182/ https://www.ncbi.nlm.nih.gov/pubmed/34451237 http://dx.doi.org/10.3390/polym13162697 |
work_keys_str_mv | AT owolabitaoreedo modelingtheopticalpropertiesofapolyvinylalcoholbasedcompositeusingaparticleswarmoptimizedsupportvectorregressionalgorithm AT abdrahmanmohdamiruddin modelingtheopticalpropertiesofapolyvinylalcoholbasedcompositeusingaparticleswarmoptimizedsupportvectorregressionalgorithm |