Cargando…

Comparative Study of Natural Terpenoid Precursors in Reactive Plasmas for Thin Film Deposition

If plasma polymer thin films are to be synthesised from sustainable and natural precursors of chemically heterogeneous composition, it is important to understand the extent to which this composition influences the mechanism of polymerisation. To this end, a well-studied monoterpene alcohol, terpinen...

Descripción completa

Detalles Bibliográficos
Autores principales: Grant, Daniel S., Ahmed, Jakaria, Whittle, Jason D., Michelmore, Andrew, Vasilev, Krasimir, Bazaka, Kateryna, Jacob, Mohan V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402203/
https://www.ncbi.nlm.nih.gov/pubmed/34443354
http://dx.doi.org/10.3390/molecules26164762
Descripción
Sumario:If plasma polymer thin films are to be synthesised from sustainable and natural precursors of chemically heterogeneous composition, it is important to understand the extent to which this composition influences the mechanism of polymerisation. To this end, a well-studied monoterpene alcohol, terpinen-4-ol, has been targeted for a comparative study with the naturally occurring mix of terpenes (viz. Melaleuca alternifolia oil) from which it is commonly distilled. Positive ion mode mass spectra of both terpinen-4-ol and M. alternifolia oil showed a decrease in disparities between the type and abundance of cationic species formed in their respective plasma environments as applied plasma power was increased. Supplementary biological assay revealed the antibacterial action of both terpinen-4-ol and M. alternifolia derived coatings with respect to S. aureus bacteria, whilst cytocompatibility was demonstrated by comparable eukaryotic cell adhesion to both coatings. Elucidating the processes occurring within the reactive plasmas can enhance the economics of plasma polymer deposition by permitting use of the minimum power, time and precursor pre-processing required to control the extent of monomer fragmentation and fabricate a film of the desired thickness and functionality.