Cargando…
Unsupervised Learning in RSS-Based DFLT Using an EM Algorithm
Received signal strength (RSS) changes of static wireless nodes can be used for device-free localization and tracking (DFLT). Most RSS-based DFLT systems require access to calibration data, either RSS measurements from a time period when the area was not occupied by people, or measurements while a p...
Autores principales: | Kaltiokallio, Ossi, Hostettler, Roland, Yiğitler, Hüseyin, Valkama, Mikko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402244/ https://www.ncbi.nlm.nih.gov/pubmed/34450991 http://dx.doi.org/10.3390/s21165549 |
Ejemplares similares
-
Robust Statistical Approaches for RSS-Based Floor Detection in Indoor Localization
por: Razavi, Alireza, et al.
Publicado: (2016) -
Secrets of RSS
por: Holzner, Steven
Publicado: (2006) -
An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders
por: Wang, Xiangwen, et al.
Publicado: (2023) -
Unsupervised learning algorithms
por: Celebi, M, et al.
Publicado: (2016) -
Overview of Time Synchronization for IoT Deployments: Clock Discipline Algorithms and Protocols
por: Yiğitler, Hüseyin, et al.
Publicado: (2020)