Cargando…
Optimal Motion Planning in GPS-Denied Environments Using Nonlinear Model Predictive Horizon
Navigating robotic systems autonomously through unknown, dynamic and GPS-denied environments is a challenging task. One requirement of this is a path planner which provides safe trajectories in real-world conditions such as nonlinear vehicle dynamics, real-time computation requirements, complex 3D e...
Autores principales: | Younes, Younes Al, Barczyk, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402248/ https://www.ncbi.nlm.nih.gov/pubmed/34450989 http://dx.doi.org/10.3390/s21165547 |
Ejemplares similares
-
Sampling-Based Real-Time Motion Planning under State Uncertainty for Autonomous Micro-Aerial Vehicles in GPS-Denied Environments
por: Li, Dachuan, et al.
Publicado: (2014) -
Autonomous Navigation for Drone Swarms in GPS-Denied Environments Using Structured Learning
por: Power, William, et al.
Publicado: (2020) -
Cooperative Monocular-Based SLAM for Multi-UAV Systems in GPS-Denied Environments †
por: Trujillo, Juan-Carlos, et al.
Publicado: (2018) -
Enabling UAV Navigation with Sensor and Environmental Uncertainty in Cluttered and GPS-Denied Environments
por: Vanegas, Fernando, et al.
Publicado: (2016) -
BLocate: A Building Identification Scheme in GPS Denied Environments Using Smartphone Sensors
por: Ashraf, Imran, et al.
Publicado: (2018)