Cargando…
No Fine-Tuning, No Cry: Robust SVD for Compressing Deep Networks
A common technique for compressing a neural network is to compute the k-rank [Formula: see text] approximation [Formula: see text] of the matrix [Formula: see text] via SVD that corresponds to a fully connected layer (or embedding layer). Here, d is the number of input neurons in the layer, n is the...
Autores principales: | Tukan, Murad, Maalouf, Alaa, Weksler, Matan, Feldman, Dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402276/ https://www.ncbi.nlm.nih.gov/pubmed/34451040 http://dx.doi.org/10.3390/s21165599 |
Ejemplares similares
-
Coresets for the Average Case Error for Finite Query Sets
por: Maalouf, Alaa, et al.
Publicado: (2021) -
Analytic robust stability analysis of SVD orbit feedback
por: Pfingstner, Jürgen, et al.
Publicado: (2012) -
Robust adversarial uncertainty quantification for deep learning fine-tuning
por: Ahmed, Usman, et al.
Publicado: (2023) -
Comparison of two SVD-based color image compression schemes
por: Li, Ying, et al.
Publicado: (2017) -
Enhanced Invisibility and Robustness of Digital Image Watermarking Based on DWT-SVD
por: Alzahrani, Ali
Publicado: (2022)