Cargando…
A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification
In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the pre...
Autores principales: | Mandal, Moumita, Singh, Pawan Kumar, Ijaz, Muhammad Fazal, Shafi, Jana, Sarkar, Ram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402295/ https://www.ncbi.nlm.nih.gov/pubmed/34451013 http://dx.doi.org/10.3390/s21165571 |
Ejemplares similares
-
Rumour detection using deep learning and filter-wrapper feature selection in benchmark twitter dataset
por: Kumar, Akshi, et al.
Publicado: (2021) -
Ranking of characteristic features in combined wrapper approaches to selection
por: Stańczyk, Urszula
Publicado: (2014) -
Artificial Intelligence based wrapper for high dimensional feature selection
por: Jain, Rahi, et al.
Publicado: (2023) -
Application of wrapper based hybrid system for classification of risk tolerance in the Indian mining industry
por: Kumar, Deepak, et al.
Publicado: (2023) -
SnapEnsemFS: a snapshot ensembling-based deep feature selection model for colorectal cancer histological analysis
por: Chattopadhyay, Soumitri, et al.
Publicado: (2023)