Cargando…
Deep Learning for Classifying Physical Activities from Accelerometer Data
Physical inactivity increases the risk of many adverse health conditions, including the world’s major non-communicable diseases, such as coronary heart disease, type 2 diabetes, and breast and colon cancers, shortening life expectancy. There are minimal medical care and personal trainers’ methods to...
Autores principales: | Nunavath, Vimala, Johansen, Sahand, Johannessen, Tommy Sandtorv, Jiao, Lei, Hansen, Bjørge Herman, Berntsen, Sveinung, Goodwin, Morten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402311/ https://www.ncbi.nlm.nih.gov/pubmed/34451005 http://dx.doi.org/10.3390/s21165564 |
Ejemplares similares
-
Establishing the Convergent Validity of the Travel Habit Questions in the Health Behavior in School-Aged Children Questionnaire by Quantifying Active Travel in Norwegian Adolescents
por: Malnes, Lena, et al.
Publicado: (2022) -
Accelerometer-measured physical activity and sedentary time in a cohort of US adults followed for up to 13 years: the influence of removing early follow-up on associations with mortality
por: Tarp, Jakob, et al.
Publicado: (2020) -
Comparison of three activity monitors for estimating sedentary time among children
por: Stålesen, Jarle, et al.
Publicado: (2016) -
A Conceptual Framework Proposal for a Noise Modelling Service for Drones in U-Space Architecture
por: Langen, Tommy, et al.
Publicado: (2021) -
How many days of continuous physical activity monitoring reliably represent time in different intensities in cancer survivors
por: Western, Benedikte, et al.
Publicado: (2023)