Cargando…
Point Cloud Hand–Object Segmentation Using Multimodal Imaging with Thermal and Color Data for Safe Robotic Object Handover
This paper presents an application of neural networks operating on multimodal 3D data (3D point cloud, RGB, thermal) to effectively and precisely segment human hands and objects held in hand to realize a safe human–robot object handover. We discuss the problems encountered in building a multimodal s...
Autores principales: | Zhang, Yan, Müller, Steffen, Stephan, Benedict, Gross, Horst-Michael, Notni, Gunther |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402345/ https://www.ncbi.nlm.nih.gov/pubmed/34451117 http://dx.doi.org/10.3390/s21165676 |
Ejemplares similares
-
OHO: A Multi-Modal, Multi-Purpose Dataset for Human-Robot Object Hand-Over
por: Stephan, Benedict, et al.
Publicado: (2023) -
Impact of hand and object colors on object temperature perception
por: Ho, Hsin-Ni, et al.
Publicado: (2015) -
The Grasp Strategy of a Robot Passer Influences Performance and Quality of the Robot-Human Object Handover
por: Ortenzi, Valerio, et al.
Publicado: (2020) -
Dataset of bimanual human-to-human object handovers
por: Kshirsagar, Alap, et al.
Publicado: (2023) -
Safe Handover : Safe Patients – The Electronic Handover System
por: Till, Alex, et al.
Publicado: (2014)