Cargando…
Monocular Visual Position and Attitude Estimation Method of a Drogue Based on Coaxial Constraints
In aerial refueling, there exists deformation of the circular feature on the drogue’s stabilizing umbrella to a certain extent, which causes the problem of duality of position estimation by a single circular feature. In this paper, a monocular visual position and attitude estimation method of a drog...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402363/ https://www.ncbi.nlm.nih.gov/pubmed/34451114 http://dx.doi.org/10.3390/s21165673 |
Sumario: | In aerial refueling, there exists deformation of the circular feature on the drogue’s stabilizing umbrella to a certain extent, which causes the problem of duality of position estimation by a single circular feature. In this paper, a monocular visual position and attitude estimation method of a drogue is proposed based on the coaxial constraints. Firstly, a procedure for scene recovery from one single circle is introduced. The coaxial constraints of the drogue are proposed and proved to be useful for the duality’s elimination by analyzing the matrix of the spatial structure. Furthermore, we came up with our method, which is composed of fitting the parameters of the spatial circles by restoring the 3D points on it, using the two-level coaxial constraints to eliminate the duality, and optimizing the normal vector of the plane where the inner circle is located. Finally, the effectiveness and robustness of the method proposed in this paper are verified, and the influence of the coaxial circle’s spatial structure on the method is explored through simulations of and experiments on a drogue model. Under the interference of a large amount of noise, the duality elimination success rate of our method can also be maintained at a level that is more than 10% higher than others. In addition, the accuracy of the normal vector obtained by the fusion algorithm is improved, and the mean angle error is reduced by more than 26.7%. |
---|