Cargando…
Automated Flood Depth Estimates from Online Traffic Sign Images: Explorations of a Convolutional Neural Network-Based Method
Flood depth monitoring is crucial for flood warning systems and damage control, especially in the event of an urban flood. Existing gauge station data and remote sensing data still has limited spatial and temporal resolution and coverage. Therefore, to expand flood depth data source taking use of on...
Autores principales: | Song, Zhiqing, Tuo, Ye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402382/ https://www.ncbi.nlm.nih.gov/pubmed/34451056 http://dx.doi.org/10.3390/s21165614 |
Ejemplares similares
-
Validation of a convolutional neural network for the automated creation of curved planar reconstruction images along the main pancreatic duct
por: Koretsune, Yuji, et al.
Publicado: (2022) -
AXIOME: automated exploration of microbial diversity
por: Lynch, Michael DJ, et al.
Publicado: (2013) -
DeepPod: a convolutional neural network based quantification of fruit number in Arabidopsis
por: Hamidinekoo, Azam, et al.
Publicado: (2020) -
ARA: a flexible pipeline for automated exploration of NCBI SRA datasets
por: Maurya, Anand, et al.
Publicado: (2023) -
Automated age‐at‐death estimation by cementochronology: Essential application or additional complication?
por: Bertrand, Benoit, et al.
Publicado: (2022)