Cargando…

Extracting Key Traffic Parameters from UAV Video with On-Board Vehicle Data Validation

The advantages of UAV video in flexibility, traceability, easy-operation, and abundant information make it a popular and powerful aerial tool applied in traffic monitoring in recent years. This paper proposed a systematic approach to detect and track vehicles based on the YOLO v3 model and the deep...

Descripción completa

Detalles Bibliográficos
Autores principales: Shan, Donghui, Lei, Tian, Yin, Xiaohong, Luo, Qin, Gong, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402389/
https://www.ncbi.nlm.nih.gov/pubmed/34451061
http://dx.doi.org/10.3390/s21165620
Descripción
Sumario:The advantages of UAV video in flexibility, traceability, easy-operation, and abundant information make it a popular and powerful aerial tool applied in traffic monitoring in recent years. This paper proposed a systematic approach to detect and track vehicles based on the YOLO v3 model and the deep SORT algorithm for further extracting key traffic parameters. A field experiment was implemented to provide data for model training and validation to ensure the accuracy of the proposed approach. In the experiment, 5400 frame images and 1192 speed points were collected from two test vehicles equipped with high-precision GNSS-RTK and onboard OBD after completion of seven experimental groups with a different height (150 m to 500 m) and operating speed (40 km/h to 90 km/h). The results indicate that the proposed approach exhibits strong robustness and reliability, due to the 90.88% accuracy of object detection and 98.9% precision of tracking vehicle. Moreover, the absolute and relative error of extracted speed falls within ±3 km/h and 2%, respectively. The overall accuracy of the extracted parameters reaches up to 98%.