Cargando…
Extracting Key Traffic Parameters from UAV Video with On-Board Vehicle Data Validation
The advantages of UAV video in flexibility, traceability, easy-operation, and abundant information make it a popular and powerful aerial tool applied in traffic monitoring in recent years. This paper proposed a systematic approach to detect and track vehicles based on the YOLO v3 model and the deep...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402389/ https://www.ncbi.nlm.nih.gov/pubmed/34451061 http://dx.doi.org/10.3390/s21165620 |
Sumario: | The advantages of UAV video in flexibility, traceability, easy-operation, and abundant information make it a popular and powerful aerial tool applied in traffic monitoring in recent years. This paper proposed a systematic approach to detect and track vehicles based on the YOLO v3 model and the deep SORT algorithm for further extracting key traffic parameters. A field experiment was implemented to provide data for model training and validation to ensure the accuracy of the proposed approach. In the experiment, 5400 frame images and 1192 speed points were collected from two test vehicles equipped with high-precision GNSS-RTK and onboard OBD after completion of seven experimental groups with a different height (150 m to 500 m) and operating speed (40 km/h to 90 km/h). The results indicate that the proposed approach exhibits strong robustness and reliability, due to the 90.88% accuracy of object detection and 98.9% precision of tracking vehicle. Moreover, the absolute and relative error of extracted speed falls within ±3 km/h and 2%, respectively. The overall accuracy of the extracted parameters reaches up to 98%. |
---|