Cargando…
Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks
The near-infrared (NIR) spectral range (from 780 to 2500 nm) of the multispectral remote sensing imagery provides vital information for landcover classification, especially concerning vegetation assessment. Despite the usefulness of NIR, it does not always accomplish common RGB. Modern achievements...
Autores principales: | Illarionova, Svetlana, Shadrin, Dmitrii, Trekin, Alexey, Ignatiev, Vladimir, Oseledets, Ivan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402395/ https://www.ncbi.nlm.nih.gov/pubmed/34451088 http://dx.doi.org/10.3390/s21165646 |
Ejemplares similares
-
Bayesian optimization for seed germination
por: Nikitin, Artyom, et al.
Publicado: (2019) -
Regulation-based probabilistic substance quality index and automated geo-spatial modeling for water quality assessment
por: Nikitin, Artyom, et al.
Publicado: (2021) -
A Single Image Deep Learning Approach to Restoration of Corrupted Landsat-7 Satellite Images
por: Petrovskaia, Anna, et al.
Publicado: (2022) -
Interpreting wide-band neural activity using convolutional neural networks
por: Frey, Markus, et al.
Publicado: (2021) -
Convolutional Neural Networks for Shelter Recognition in Satellite Images of Refugee Camps
por: Lacroix, Nathan Jean C
Publicado: (2018)