Cargando…
A Deep Learning-Based Fault Detection Model for Optimization of Shipping Operations and Enhancement of Maritime Safety
The ability to exploit data for obtaining useful and actionable information and for providing insights is an essential element for continuous process improvements. Recognizing the value of data as an asset, marine engineering puts data considerations at the core of system design. Used wisely, data c...
Autores principales: | Theodoropoulos, Panayiotis, Spandonidis, Christos C., Giannopoulos, Fotis, Fassois, Spilios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402427/ https://www.ncbi.nlm.nih.gov/pubmed/34451099 http://dx.doi.org/10.3390/s21165658 |
Ejemplares similares
-
A Combined Semi-Supervised Deep Learning Method for Oil Leak Detection in Pipelines Using IIoT at the Edge
por: Spandonidis, Christos, et al.
Publicado: (2022) -
The maritime engineering reference book: a guide to ship design, construction and operation
por: Molland, Anthony F
Publicado: (2008) -
Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning
por: Zhang, Xinyu, et al.
Publicado: (2019) -
Evaluation of a Deep Learning-Based Index for Prognosis of a Vessel’s Propeller-Hull Degradation
por: Spandonidis, Christos, et al.
Publicado: (2023) -
Assessment of global shipping risk caused by maritime piracy
por: He, Zhaoyang, et al.
Publicado: (2023)