Cargando…

An Electromagnetic Vibration Energy Harvester with a Tunable Mass Moment of Inertia

This paper presents a vibration-based electromagnetic energy harvester whose resonance frequency can be adjusted to match that of the excitation. Frequency adjustment is attained by controlling a rotatable arm, with tuning masses, at the tip of a cantilever-type energy harvester, thereby changing th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ibrahim, Peter, Arafa, Mustafa, Anis, Yasser
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402506/
https://www.ncbi.nlm.nih.gov/pubmed/34451051
http://dx.doi.org/10.3390/s21165611
Descripción
Sumario:This paper presents a vibration-based electromagnetic energy harvester whose resonance frequency can be adjusted to match that of the excitation. Frequency adjustment is attained by controlling a rotatable arm, with tuning masses, at the tip of a cantilever-type energy harvester, thereby changing the effective mass moment of inertia of the system. The rotatable arm is mounted on a servomotor that is autonomously controlled through a microcontroller and a photo sensor to keep the device at resonance for maximum power generation. A mathematical model is developed to predict the system response for different design parameters and to estimate the generated power. The system is investigated analytically by a distributed-parameter model to study the natural frequency variation and dynamic response. The analytical model is verified experimentally where the frequency is tuned from 8 to 10.25 Hz. A parametric study is performed to study the effect of each parameter on the system behavior.