Cargando…
Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements
Pattern recognition algorithms have been widely used to map surface electromyographic signals to target movements as a source for prosthetic control. However, most investigations have been conducted offline by performing the analysis on pre-recorded datasets. While real-time data analysis (i.e., cla...
Autores principales: | Abbaspour, Sara, Naber, Autumn, Ortiz-Catalan, Max, GholamHosseini, Hamid, Lindén, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402521/ https://www.ncbi.nlm.nih.gov/pubmed/34451119 http://dx.doi.org/10.3390/s21165677 |
Ejemplares similares
-
Evaluation of surface EMG-based recognition algorithms for decoding hand movements
por: Abbaspour, Sara, et al.
Publicado: (2019) -
Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition
por: Ortiz-Catalan, Max
Publicado: (2015) -
Classification complexity in myoelectric pattern recognition
por: Nilsson, Niclas, et al.
Publicado: (2017) -
Empirical Myoelectric Feature Extraction and Pattern Recognition in Hemiplegic Distal Movement Decoding
por: Anastasiev, Alexey, et al.
Publicado: (2023) -
Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis
por: Krasoulis, Agamemnon, et al.
Publicado: (2020)