Cargando…

Readout Integrated Circuit for Small-Sized and Low-Power Gas Sensor Based on HEMT Device

This paper presents a small-sized, low-power gas sensor system combining a high-electron-mobility transistor (HEMT) device and readout integrated circuit (ROIC). Using a semiconductor-based HEMT as a gas-sensing device, it is possible to secure high sensitivity, reduced complexity, low power, and sm...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Seungjun, Jin, Joohwan, Baek, Jihyun, Lee, Juyong, Chae, Hyungil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402593/
https://www.ncbi.nlm.nih.gov/pubmed/34451080
http://dx.doi.org/10.3390/s21165637
Descripción
Sumario:This paper presents a small-sized, low-power gas sensor system combining a high-electron-mobility transistor (HEMT) device and readout integrated circuit (ROIC). Using a semiconductor-based HEMT as a gas-sensing device, it is possible to secure high sensitivity, reduced complexity, low power, and small size of the ROIC sensor system. Unlike existing gas sensors comprising only HEMT elements, the proposed sensor system has both an ROIC and a digital controller and can control sensor operation through a simple calibration process with digital signal processing while maintaining constant performance despite variations. The ROIC mainly consists of a transimpedance amplifier (TIA), a negative-voltage generator, and an analog-to-digital converter (ADC) and is designed to match a minimum target detection unit of 1 ppm for hydrogen. The prototype ROIC for the HEMT presented herein was implemented in a 0.18 µm complementary metal–oxide–semiconductor (CMOS) process. The total measured power consumption and detection unit of the proposed ROIC for hydrogen gas were 3.1 mW and 2.6 ppm, respectively.