Cargando…
Automatic Polyp Segmentation in Colonoscopy Images Using a Modified Deep Convolutional Encoder-Decoder Architecture
Colorectal cancer has become the third most commonly diagnosed form of cancer, and has the second highest fatality rate of cancers worldwide. Currently, optical colonoscopy is the preferred tool of choice for the diagnosis of polyps and to avert colorectal cancer. Colon screening is time-consuming a...
Autores principales: | Eu, Chin Yii, Tang, Tong Boon, Lin, Cheng-Hung, Lee, Lok Hua, Lu, Cheng-Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402594/ https://www.ncbi.nlm.nih.gov/pubmed/34451072 http://dx.doi.org/10.3390/s21165630 |
Ejemplares similares
-
Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images
por: Lewis, John, et al.
Publicado: (2023) -
Image Segmentation Using Encoder-Decoder with Deformable Convolutions
por: Gurita, Andreea, et al.
Publicado: (2021) -
Automatic Crack Detection on Road Pavements Using Encoder-Decoder Architecture
por: Fan, Zhun, et al.
Publicado: (2020) -
Efficient attention-based deep encoder and decoder for automatic crack segmentation
por: Kang, Dong H, et al.
Publicado: (2021) -
Automatic detection and segmentation of adenomatous colorectal polyps during colonoscopy using Mask R-CNN
por: Meng, Jie, et al.
Publicado: (2020)