Cargando…
An Improved Feature Selection Method Based on Random Forest Algorithm for Wind Turbine Condition Monitoring
Feature selection and dimensionality reduction are important for the performance of wind turbine condition monitoring models using supervisory control and data acquisition (SCADA) data. In this paper, an improved random forest algorithm, namely Feature Simplification Random Forest (FS_RF), is propos...
Autores principales: | Li, Guo, Wang, Chensheng, Zhang, Di, Yang, Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402606/ https://www.ncbi.nlm.nih.gov/pubmed/34451096 http://dx.doi.org/10.3390/s21165654 |
Ejemplares similares
-
Vibration-based condition monitoring of wind turbines
por: Barszcz, Tomasz
Publicado: (2018) -
Effects of Wind Conditions on Wind Turbine Temperature Monitoring and Solution Based on Wind Condition Clustering and IGA-ELM
por: Hou, Zhengnan, et al.
Publicado: (2022) -
Aspects of structural health and condition monitoring of offshore wind turbines
por: Antoniadou, I., et al.
Publicado: (2015) -
Condition Monitoring of Wind Turbine Systems by Explainable Artificial Intelligence Techniques
por: Astolfi, Davide, et al.
Publicado: (2023) -
Crack Monitoring of Operational Wind Turbine Foundations
por: Perry, Marcus, et al.
Publicado: (2017)