Cargando…
AENeT: an attention-enabled neural architecture for fake news detection using contextual features
In the current era of social media, the popularity of smartphones and social media platforms has increased exponentially. Through these electronic media, fake news has been rising rapidly with the advent of new sources of information, which are highly unreliable. Checking off a particular news artic...
Autores principales: | Jain, Vidit, Kaliyar, Rohit Kumar, Goswami, Anurag, Narang, Pratik, Sharma, Yashvardhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403255/ https://www.ncbi.nlm.nih.gov/pubmed/34483493 http://dx.doi.org/10.1007/s00521-021-06450-4 |
Ejemplares similares
-
EchoFakeD: improving fake news detection in social media with an efficient deep neural network
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
Arabic fake news detection based on deep contextualized embedding models
por: Nassif, Ali Bou, et al.
Publicado: (2022) -
“Fake Tan” or “Fake News”?
por: Meyer, Georg, et al.
Publicado: (2020) -
Time-Dependent Regulation of Apoptosis by AEN and BAX in Response to 2-Aminoanthracene Dietary Consumption
por: Gato, Worlanyo Eric, et al.
Publicado: (2014)