Cargando…
Methods, Databases and Recent Advancement of Vision-Based Hand Gesture Recognition for HCI Systems: A Review
Hand gesture recognition is viewed as a significant field of exploration in computer vision with assorted applications in the human–computer communication (HCI) community. The significant utilization of gesture recognition covers spaces like sign language, medical assistance and virtual reality–augm...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403257/ https://www.ncbi.nlm.nih.gov/pubmed/34485925 http://dx.doi.org/10.1007/s42979-021-00827-x |
Sumario: | Hand gesture recognition is viewed as a significant field of exploration in computer vision with assorted applications in the human–computer communication (HCI) community. The significant utilization of gesture recognition covers spaces like sign language, medical assistance and virtual reality–augmented reality and so on. The underlying undertaking of a hand gesture-based HCI framework is to acquire raw data which can be accomplished fundamentally by two methodologies: sensor based and vision based. The sensor-based methodology requires the utilization of instruments or the sensors to be genuinely joined to the arm/hand of the user to extract information. While vision-based plans require the obtaining of pictures or recordings of the hand gestures through a still/video camera. Here, we will essentially discuss vision-based hand gesture recognition with a little prologue to sensor-based data obtaining strategies. This paper overviews the primary methodologies in vision-based hand gesture recognition for HCI. Major topics include different types of gestures, gesture acquisition systems, major problems of the gesture recognition system, steps in gesture recognition like acquisition, detection and pre-processing, representation and feature extraction, and recognition. Here, we have provided an elaborated list of databases, and also discussed the recent advances and applications of hand gesture-based systems. A detailed discussion is provided on feature extraction and major classifiers in current use including deep learning techniques. Special attention is given to classify the schemes/approaches at various stages of the gesture recognition system for a better understanding of the topic to facilitate further research in this area. |
---|