Cargando…

Targeting Hypertension Screening in Low‐ and Middle‐Income Countries: A Cross‐Sectional Analysis of 1.2 Million Adults in 56 Countries

BACKGROUND: As screening programs in low‐ and middle‐income countries (LMICs) often do not have the resources to screen the entire population, there is frequently a need to target such efforts to easily identifiable priority groups. This study aimed to determine (1) how hypertension prevalence in LM...

Descripción completa

Detalles Bibliográficos
Autores principales: Kirschbaum, Tabea K., Theilmann, Michaela, Sudharsanan, Nikkil, Manne‐Goehler, Jennifer, Lemp, Julia M., De Neve, Jan‐Walter, Marcus, Maja E., Ebert, Cara, Chen, Simiao, Aryal, Krishna K., Bahendeka, Silver K., Norov, Bolormaa, Damasceno, Albertino, Dorobantu, Maria, Farzadfar, Farshad, Fattahi, Nima, Gurung, Mongal S., Guwatudde, David, Labadarios, Demetre, Lunet, Nuno, Rayzan, Elham, Saeedi Moghaddam, Sahar, Webster, Jacqui, Davies, Justine I., Atun, Rifat, Vollmer, Sebastian, Bärnighausen, Till, Jaacks, Lindsay M., Geldsetzer, Pascal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403275/
https://www.ncbi.nlm.nih.gov/pubmed/34212779
http://dx.doi.org/10.1161/JAHA.121.021063
_version_ 1783745965278101504
author Kirschbaum, Tabea K.
Theilmann, Michaela
Sudharsanan, Nikkil
Manne‐Goehler, Jennifer
Lemp, Julia M.
De Neve, Jan‐Walter
Marcus, Maja E.
Ebert, Cara
Chen, Simiao
Aryal, Krishna K.
Bahendeka, Silver K.
Norov, Bolormaa
Damasceno, Albertino
Dorobantu, Maria
Farzadfar, Farshad
Fattahi, Nima
Gurung, Mongal S.
Guwatudde, David
Labadarios, Demetre
Lunet, Nuno
Rayzan, Elham
Saeedi Moghaddam, Sahar
Webster, Jacqui
Davies, Justine I.
Atun, Rifat
Vollmer, Sebastian
Bärnighausen, Till
Jaacks, Lindsay M.
Geldsetzer, Pascal
author_facet Kirschbaum, Tabea K.
Theilmann, Michaela
Sudharsanan, Nikkil
Manne‐Goehler, Jennifer
Lemp, Julia M.
De Neve, Jan‐Walter
Marcus, Maja E.
Ebert, Cara
Chen, Simiao
Aryal, Krishna K.
Bahendeka, Silver K.
Norov, Bolormaa
Damasceno, Albertino
Dorobantu, Maria
Farzadfar, Farshad
Fattahi, Nima
Gurung, Mongal S.
Guwatudde, David
Labadarios, Demetre
Lunet, Nuno
Rayzan, Elham
Saeedi Moghaddam, Sahar
Webster, Jacqui
Davies, Justine I.
Atun, Rifat
Vollmer, Sebastian
Bärnighausen, Till
Jaacks, Lindsay M.
Geldsetzer, Pascal
author_sort Kirschbaum, Tabea K.
collection PubMed
description BACKGROUND: As screening programs in low‐ and middle‐income countries (LMICs) often do not have the resources to screen the entire population, there is frequently a need to target such efforts to easily identifiable priority groups. This study aimed to determine (1) how hypertension prevalence in LMICs varies by age, sex, body mass index, and smoking status, and (2) the ability of different combinations of these variables to accurately predict hypertension. METHODS AND RESULTS: We analyzed individual‐level, nationally representative data from 1 170 629 participants in 56 LMICs, of whom 220 636 (18.8%) had hypertension. Hypertension was defined as systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or reporting to be taking blood pressure–lowering medication. The shape of the positive association of hypertension with age and body mass index varied across world regions. We used logistic regression and random forest models to compute the area under the receiver operating characteristic curve in each country for different combinations of age, body mass index, sex, and smoking status. The area under the receiver operating characteristic curve for the model with all 4 predictors ranged from 0.64 to 0.85 between countries, with a country‐level mean of 0.76 across LMICs globally. The mean absolute increase in the area under the receiver operating characteristic curve from the model including only age to the model including all 4 predictors was 0.05. CONCLUSIONS: Adding body mass index, sex, and smoking status to age led to only a minor increase in the ability to distinguish between adults with and without hypertension compared with using age alone. Hypertension screening programs in LMICs could use age as the primary variable to target their efforts.
format Online
Article
Text
id pubmed-8403275
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-84032752021-09-03 Targeting Hypertension Screening in Low‐ and Middle‐Income Countries: A Cross‐Sectional Analysis of 1.2 Million Adults in 56 Countries Kirschbaum, Tabea K. Theilmann, Michaela Sudharsanan, Nikkil Manne‐Goehler, Jennifer Lemp, Julia M. De Neve, Jan‐Walter Marcus, Maja E. Ebert, Cara Chen, Simiao Aryal, Krishna K. Bahendeka, Silver K. Norov, Bolormaa Damasceno, Albertino Dorobantu, Maria Farzadfar, Farshad Fattahi, Nima Gurung, Mongal S. Guwatudde, David Labadarios, Demetre Lunet, Nuno Rayzan, Elham Saeedi Moghaddam, Sahar Webster, Jacqui Davies, Justine I. Atun, Rifat Vollmer, Sebastian Bärnighausen, Till Jaacks, Lindsay M. Geldsetzer, Pascal J Am Heart Assoc Original Research BACKGROUND: As screening programs in low‐ and middle‐income countries (LMICs) often do not have the resources to screen the entire population, there is frequently a need to target such efforts to easily identifiable priority groups. This study aimed to determine (1) how hypertension prevalence in LMICs varies by age, sex, body mass index, and smoking status, and (2) the ability of different combinations of these variables to accurately predict hypertension. METHODS AND RESULTS: We analyzed individual‐level, nationally representative data from 1 170 629 participants in 56 LMICs, of whom 220 636 (18.8%) had hypertension. Hypertension was defined as systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or reporting to be taking blood pressure–lowering medication. The shape of the positive association of hypertension with age and body mass index varied across world regions. We used logistic regression and random forest models to compute the area under the receiver operating characteristic curve in each country for different combinations of age, body mass index, sex, and smoking status. The area under the receiver operating characteristic curve for the model with all 4 predictors ranged from 0.64 to 0.85 between countries, with a country‐level mean of 0.76 across LMICs globally. The mean absolute increase in the area under the receiver operating characteristic curve from the model including only age to the model including all 4 predictors was 0.05. CONCLUSIONS: Adding body mass index, sex, and smoking status to age led to only a minor increase in the ability to distinguish between adults with and without hypertension compared with using age alone. Hypertension screening programs in LMICs could use age as the primary variable to target their efforts. John Wiley and Sons Inc. 2021-07-02 /pmc/articles/PMC8403275/ /pubmed/34212779 http://dx.doi.org/10.1161/JAHA.121.021063 Text en © 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Kirschbaum, Tabea K.
Theilmann, Michaela
Sudharsanan, Nikkil
Manne‐Goehler, Jennifer
Lemp, Julia M.
De Neve, Jan‐Walter
Marcus, Maja E.
Ebert, Cara
Chen, Simiao
Aryal, Krishna K.
Bahendeka, Silver K.
Norov, Bolormaa
Damasceno, Albertino
Dorobantu, Maria
Farzadfar, Farshad
Fattahi, Nima
Gurung, Mongal S.
Guwatudde, David
Labadarios, Demetre
Lunet, Nuno
Rayzan, Elham
Saeedi Moghaddam, Sahar
Webster, Jacqui
Davies, Justine I.
Atun, Rifat
Vollmer, Sebastian
Bärnighausen, Till
Jaacks, Lindsay M.
Geldsetzer, Pascal
Targeting Hypertension Screening in Low‐ and Middle‐Income Countries: A Cross‐Sectional Analysis of 1.2 Million Adults in 56 Countries
title Targeting Hypertension Screening in Low‐ and Middle‐Income Countries: A Cross‐Sectional Analysis of 1.2 Million Adults in 56 Countries
title_full Targeting Hypertension Screening in Low‐ and Middle‐Income Countries: A Cross‐Sectional Analysis of 1.2 Million Adults in 56 Countries
title_fullStr Targeting Hypertension Screening in Low‐ and Middle‐Income Countries: A Cross‐Sectional Analysis of 1.2 Million Adults in 56 Countries
title_full_unstemmed Targeting Hypertension Screening in Low‐ and Middle‐Income Countries: A Cross‐Sectional Analysis of 1.2 Million Adults in 56 Countries
title_short Targeting Hypertension Screening in Low‐ and Middle‐Income Countries: A Cross‐Sectional Analysis of 1.2 Million Adults in 56 Countries
title_sort targeting hypertension screening in low‐ and middle‐income countries: a cross‐sectional analysis of 1.2 million adults in 56 countries
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403275/
https://www.ncbi.nlm.nih.gov/pubmed/34212779
http://dx.doi.org/10.1161/JAHA.121.021063
work_keys_str_mv AT kirschbaumtabeak targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT theilmannmichaela targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT sudharsanannikkil targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT mannegoehlerjennifer targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT lempjuliam targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT denevejanwalter targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT marcusmajae targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT ebertcara targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT chensimiao targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT aryalkrishnak targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT bahendekasilverk targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT norovbolormaa targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT damascenoalbertino targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT dorobantumaria targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT farzadfarfarshad targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT fattahinima targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT gurungmongals targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT guwatuddedavid targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT labadariosdemetre targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT lunetnuno targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT rayzanelham targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT saeedimoghaddamsahar targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT websterjacqui targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT daviesjustinei targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT atunrifat targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT vollmersebastian targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT barnighausentill targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT jaackslindsaym targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries
AT geldsetzerpascal targetinghypertensionscreeninginlowandmiddleincomecountriesacrosssectionalanalysisof12millionadultsin56countries