Cargando…
Effects of Sodium‐Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice
BACKGROUND: Inhibitors of the sodium‐glucose linked transporter 2 improve cardiovascular outcomes in patients with or without type 2 diabetes mellitus, but the effects on cardiac energetics and mitochondrial function are unknown. We assessed the effects of sodium‐glucose linked transporter 2 inhibit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403324/ https://www.ncbi.nlm.nih.gov/pubmed/34169737 http://dx.doi.org/10.1161/JAHA.120.019995 |
_version_ | 1783745976912052224 |
---|---|
author | Croteau, Dominique Luptak, Ivan Chambers, Jordan M. Hobai, Ion Panagia, Marcello Pimentel, David R. Siwik, Deborah A. Qin, Fuzhong Colucci, Wilson S. |
author_facet | Croteau, Dominique Luptak, Ivan Chambers, Jordan M. Hobai, Ion Panagia, Marcello Pimentel, David R. Siwik, Deborah A. Qin, Fuzhong Colucci, Wilson S. |
author_sort | Croteau, Dominique |
collection | PubMed |
description | BACKGROUND: Inhibitors of the sodium‐glucose linked transporter 2 improve cardiovascular outcomes in patients with or without type 2 diabetes mellitus, but the effects on cardiac energetics and mitochondrial function are unknown. We assessed the effects of sodium‐glucose linked transporter 2 inhibition on mitochondrial function, high‐energy phosphates, and genes encoding mitochondrial proteins in hearts of mice with and without diet‐induced diabetic cardiomyopathy. METHODS AND RESULTS: Mice fed a control diet or a high‐fat, high‐sucrose diet received ertugliflozin mixed with the diet (0.5 mg/g of diet) for 4 months. Isolated mitochondria were assessed for functional capacity. High‐energy phosphates were assessed by (31)P nuclear magnetic resonance spectroscopy concurrently with contractile performance in isolated beating hearts. The high‐fat, high‐sucrose diet caused myocardial hypertrophy, diastolic dysfunction, mitochondrial dysfunction, and impaired energetic response, all of which were prevented by ertugliflozin. With both diets, ertugliflozin caused supernormalization of contractile reserve, as measured by rate×pressure product at high work demand. Likewise, the myocardial gene sets most enriched by ertugliflozin were for oxidative phosphorylation and fatty acid metabolism, both of which were enriched independent of diet. CONCLUSIONS: Ertugliflozin not only prevented high‐fat, high‐sucrose–induced pathological cardiac remodeling, but improved contractile reserve and induced the expression of oxidative phosphorylation and fatty acid metabolism gene sets independent of diabetic status. These effects of sodium‐glucose linked transporter 2 inhibition on cardiac energetics and metabolism may contribute to improved structure and function in cardiac diseases associated with mitochondrial dysfunction, such as heart failure. |
format | Online Article Text |
id | pubmed-8403324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84033242021-09-03 Effects of Sodium‐Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice Croteau, Dominique Luptak, Ivan Chambers, Jordan M. Hobai, Ion Panagia, Marcello Pimentel, David R. Siwik, Deborah A. Qin, Fuzhong Colucci, Wilson S. J Am Heart Assoc Original Research BACKGROUND: Inhibitors of the sodium‐glucose linked transporter 2 improve cardiovascular outcomes in patients with or without type 2 diabetes mellitus, but the effects on cardiac energetics and mitochondrial function are unknown. We assessed the effects of sodium‐glucose linked transporter 2 inhibition on mitochondrial function, high‐energy phosphates, and genes encoding mitochondrial proteins in hearts of mice with and without diet‐induced diabetic cardiomyopathy. METHODS AND RESULTS: Mice fed a control diet or a high‐fat, high‐sucrose diet received ertugliflozin mixed with the diet (0.5 mg/g of diet) for 4 months. Isolated mitochondria were assessed for functional capacity. High‐energy phosphates were assessed by (31)P nuclear magnetic resonance spectroscopy concurrently with contractile performance in isolated beating hearts. The high‐fat, high‐sucrose diet caused myocardial hypertrophy, diastolic dysfunction, mitochondrial dysfunction, and impaired energetic response, all of which were prevented by ertugliflozin. With both diets, ertugliflozin caused supernormalization of contractile reserve, as measured by rate×pressure product at high work demand. Likewise, the myocardial gene sets most enriched by ertugliflozin were for oxidative phosphorylation and fatty acid metabolism, both of which were enriched independent of diet. CONCLUSIONS: Ertugliflozin not only prevented high‐fat, high‐sucrose–induced pathological cardiac remodeling, but improved contractile reserve and induced the expression of oxidative phosphorylation and fatty acid metabolism gene sets independent of diabetic status. These effects of sodium‐glucose linked transporter 2 inhibition on cardiac energetics and metabolism may contribute to improved structure and function in cardiac diseases associated with mitochondrial dysfunction, such as heart failure. John Wiley and Sons Inc. 2021-06-25 /pmc/articles/PMC8403324/ /pubmed/34169737 http://dx.doi.org/10.1161/JAHA.120.019995 Text en © 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Croteau, Dominique Luptak, Ivan Chambers, Jordan M. Hobai, Ion Panagia, Marcello Pimentel, David R. Siwik, Deborah A. Qin, Fuzhong Colucci, Wilson S. Effects of Sodium‐Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice |
title | Effects of Sodium‐Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice |
title_full | Effects of Sodium‐Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice |
title_fullStr | Effects of Sodium‐Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice |
title_full_unstemmed | Effects of Sodium‐Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice |
title_short | Effects of Sodium‐Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice |
title_sort | effects of sodium‐glucose linked transporter 2 inhibition with ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403324/ https://www.ncbi.nlm.nih.gov/pubmed/34169737 http://dx.doi.org/10.1161/JAHA.120.019995 |
work_keys_str_mv | AT croteaudominique effectsofsodiumglucoselinkedtransporter2inhibitionwithertugliflozinonmitochondrialfunctionenergeticsandmetabolicgeneexpressioninthepresenceandabsenceofdiabetesmellitusinmice AT luptakivan effectsofsodiumglucoselinkedtransporter2inhibitionwithertugliflozinonmitochondrialfunctionenergeticsandmetabolicgeneexpressioninthepresenceandabsenceofdiabetesmellitusinmice AT chambersjordanm effectsofsodiumglucoselinkedtransporter2inhibitionwithertugliflozinonmitochondrialfunctionenergeticsandmetabolicgeneexpressioninthepresenceandabsenceofdiabetesmellitusinmice AT hobaiion effectsofsodiumglucoselinkedtransporter2inhibitionwithertugliflozinonmitochondrialfunctionenergeticsandmetabolicgeneexpressioninthepresenceandabsenceofdiabetesmellitusinmice AT panagiamarcello effectsofsodiumglucoselinkedtransporter2inhibitionwithertugliflozinonmitochondrialfunctionenergeticsandmetabolicgeneexpressioninthepresenceandabsenceofdiabetesmellitusinmice AT pimenteldavidr effectsofsodiumglucoselinkedtransporter2inhibitionwithertugliflozinonmitochondrialfunctionenergeticsandmetabolicgeneexpressioninthepresenceandabsenceofdiabetesmellitusinmice AT siwikdeboraha effectsofsodiumglucoselinkedtransporter2inhibitionwithertugliflozinonmitochondrialfunctionenergeticsandmetabolicgeneexpressioninthepresenceandabsenceofdiabetesmellitusinmice AT qinfuzhong effectsofsodiumglucoselinkedtransporter2inhibitionwithertugliflozinonmitochondrialfunctionenergeticsandmetabolicgeneexpressioninthepresenceandabsenceofdiabetesmellitusinmice AT colucciwilsons effectsofsodiumglucoselinkedtransporter2inhibitionwithertugliflozinonmitochondrialfunctionenergeticsandmetabolicgeneexpressioninthepresenceandabsenceofdiabetesmellitusinmice |