Cargando…

Fluorescent carbon-dots enhance light harvesting and photosynthesis by overexpressing PsbP and PsiK genes

BACKGROUND: Fluorescent carbon-dots (CDs) with multifaceted advantages have provided hope for improvement of crop growth. Near infrared (NIR) CDs would be more competitive and promising than short-wavelength emissive CDs, which are not directly utilized by chloroplast. The molecular targets and unde...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yuhui, Xie, Zhuomi, Wang, Xiuhua, Peng, Xin, Zheng, Jianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403421/
https://www.ncbi.nlm.nih.gov/pubmed/34454524
http://dx.doi.org/10.1186/s12951-021-01005-0
Descripción
Sumario:BACKGROUND: Fluorescent carbon-dots (CDs) with multifaceted advantages have provided hope for improvement of crop growth. Near infrared (NIR) CDs would be more competitive and promising than short-wavelength emissive CDs, which are not directly utilized by chloroplast. The molecular targets and underlying mechanism of these stimulative effects are rarely mentioned. RESULTS: NIR-CDs with good mono-dispersity and hydrophily were easily prepared by a one-step microwave-assisted carbonization manner, which showed obvious UV absorptive and far-red emissive properties. The chloroplast-CDs complexes could accelerate the electron transfer from photosystem II (PS II) to photosystem I (PS I). NIR-CDs exhibited a concentration-dependent promotion effect on N. benthamiana growth by strengthening photosynthesis. We firstly demonstrated that potential mechanisms behind the photosynthesis-stimulating activity might be related to up-regulated expression of the photosynthesis and chloroplast synthesis related genes, among which PsbP and PsiK genes are the key regulators. CONCLUSION: These results illustrated that NIR-CDs showed great potential in the applications to increase crop yields through ultraviolet light harvesting and elevated photosynthesis efficiency. This work would provide a theoretical basis for the understanding and applications of the luminescent nanomaterials (not limited to CDs) in the sunlight conversion-related sustainable agriculture. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-021-01005-0.