Cargando…
PCA-based unsupervised feature extraction for gene expression analysis of COVID-19 patients
Coronavirus disease 2019 (COVID-19) is raging worldwide. This potentially fatal infectious disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the complete mechanism of COVID-19 is not well understood. Therefore, we analyzed gene expression profiles of COVID-1...
Autores principales: | Fujisawa, Kota, Shimo, Mamoru, Taguchi, Y.-H., Ikematsu, Shinya, Miyata, Ryota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403676/ https://www.ncbi.nlm.nih.gov/pubmed/34456333 http://dx.doi.org/10.1038/s41598-021-95698-w |
Ejemplares similares
-
Unsupervised feature extraction applied to bioinformatics: a PCA based and TD based approach
por: Taguchi, Y-h
Publicado: (2019) -
Adapted tensor decomposition and PCA based unsupervised feature extraction select more biologically reasonable differentially expressed genes than conventional methods
por: Taguchi, Y-h., et al.
Publicado: (2022) -
Tensor Decomposition-Based Unsupervised Feature Extraction Applied to Single-Cell Gene Expression Analysis
por: Taguchi, Y-h., et al.
Publicado: (2019) -
Principal component analysis based unsupervised feature extraction applied to budding yeast temporally periodic gene expression
por: Taguchi, Y-h
Publicado: (2016) -
GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge
por: Wagner, Florian
Publicado: (2015)