Cargando…

Real-time assessment of guided bone regeneration in critical size mandibular bone defects in rats using collagen membranes with adjunct fibroblast growth factor-2

BACKGROUND/PURPOSE: Fibroblast growth factor-2 (FGF-2) regulates bone formation. The concept of guided bone regeneration using a resorbable collagen membrane (RCM) is generally accepted in implant dentistry. This study aimed to investigate the bone healing pattern in rat mandibular bone defects in r...

Descripción completa

Detalles Bibliográficos
Autores principales: Furuhata, Mitsuaki, Takayama, Tadahiro, Yamamoto, Takanobu, Ozawa, Yasumasa, Senoo, Motoki, Ozaki, Manami, Yamano, Seiichi, Sato, Shuichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Association for Dental Sciences of the Republic of China 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403809/
https://www.ncbi.nlm.nih.gov/pubmed/34484585
http://dx.doi.org/10.1016/j.jds.2021.03.008
Descripción
Sumario:BACKGROUND/PURPOSE: Fibroblast growth factor-2 (FGF-2) regulates bone formation. The concept of guided bone regeneration using a resorbable collagen membrane (RCM) is generally accepted in implant dentistry. This study aimed to investigate the bone healing pattern in rat mandibular bone defects in real-time with and without RCM containing FGF-2 (RCM/FGF-2). MATERIALS AND METHODS: Critical-size circular bone defects (4.0 mm diameter) were created on both sides of the rat mandibular bone. The defects were randomly divided into the following groups: control, RCM alone, RCM containing low (0.5 μg) or high (2.0 μg) concentration of FGF-2. We performed real-time in vivo micro-computerized tomography scans at the baseline and at 2, 4, and 6 weeks, and measured the volume of newly formed bone (NFB), bone mineral density (BMD) of NFB, and the closure percentage of the NFB area. At 6 weeks, the mandibular specimens were assessed histologically and histomorphometrically to evaluate the area of new bone regeneration. RESULTS: Real-time assessment revealed a significant increase in the volume, BMD, and closure percentage of the NFB area in the RCM/FGF-2-treated groups than that in the control and RCM groups. In the H-FGF-2 group, the volume and BMD of NFB exhibited a significant increase at 6 weeks than that at the baseline. Histological evaluation revealed the presence of osteoblasts, osteocytes, and blood vessels within the NFB. CONCLUSION: The real-time in vivo experiment demonstrated that RCM/FGF-2 effectively promoted bone regeneration within the critical-size mandibular defects in rats and verified new bone formation starting in the early postoperative phase.