Cargando…

On the utility of a well-mixed model for predicting disease transmission on an urban bus

The transport of virus-laden aerosols from a host to a susceptible person is governed by complex turbulent airflow and physics related to breathing, coughing and sneezing, mechanical and passive ventilation, thermal buoyancy effects, surface deposition, masks, and air filtration. In this paper, we s...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhihang, Capecelatro, Jesse, Maki, Kevin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404159/
https://www.ncbi.nlm.nih.gov/pubmed/34466279
http://dx.doi.org/10.1063/5.0061219
Descripción
Sumario:The transport of virus-laden aerosols from a host to a susceptible person is governed by complex turbulent airflow and physics related to breathing, coughing and sneezing, mechanical and passive ventilation, thermal buoyancy effects, surface deposition, masks, and air filtration. In this paper, we study the infection risk via airborne transmission on an urban bus using unsteady Reynolds-averaged Navier–Stokes equations and a passive-scalar model of the virus-laden aerosol concentration. Results from these simulations are directly compared to the widely used well-mixed model and show significant differences in the concentration field and number of inhaled particles. Specifically, in the limit of low mechanical ventilation rates, the well-mixed model will overpredict the concentration far from the infected passenger and substantially underpredict the concentration near the infected passenger. The results reported herein also apply to other enclosed spaces.