Cargando…
A novel pathogenic splice site variation in STK11 gene results in Peutz–Jeghers syndrome
BACKGROUND: Peutz–Jeghers syndrome (PJS) is a rare autosomal dominantly inherited disease resulting in multiple gastrointestinal hamartomatous polyps, mucocutaneous pigmentation, and an increased risk of various types of cancer, and is caused by variations in the serine/threonine protein kinase STK1...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404226/ https://www.ncbi.nlm.nih.gov/pubmed/34080793 http://dx.doi.org/10.1002/mgg3.1729 |
_version_ | 1783746127196061696 |
---|---|
author | Zhao, Na Wu, Huizhi Li, Ping Wang, Yuxian Dong, Li Xiao, Han Wu, Changxin |
author_facet | Zhao, Na Wu, Huizhi Li, Ping Wang, Yuxian Dong, Li Xiao, Han Wu, Changxin |
author_sort | Zhao, Na |
collection | PubMed |
description | BACKGROUND: Peutz–Jeghers syndrome (PJS) is a rare autosomal dominantly inherited disease resulting in multiple gastrointestinal hamartomatous polyps, mucocutaneous pigmentation, and an increased risk of various types of cancer, and is caused by variations in the serine/threonine protein kinase STK11 (LKB1). METHODS: STK11 gene variations were identified by analyzing STK11 cDNA and genomic DNA. Minigenes carrying the wild‐type and mutant sequences were subjected to in vitro splicing assay to dissect the features of these mutations. The different distribution of wild‐type and mutant protein in cells were tested by Immunofluorescence assays and the functional analysis of the variation were performed using Western blot. RESULTS: A novel heterozygous splice‐acceptor site variation (c.921‐2 A>C) in intron 7 of the STK11 gene which is co‐segregates with the PJS phenotypes in the proband and all the affected family members and three previously reported variations (c.180C>G, c.580G>A, c.787_790del) were identified in the four families. The c.921‐2 A>C substitution resulted in the inactivation of a splice site and the utilization of a cryptic splice acceptor site surrounding exon 8, generating three different aberrant RNA transcripts, leading to frameshift translation and protein truncation. The results of minigenes indicated that the spliceosome can use a variety of 3’ acceptor site sequences to pair with a given 5’ donor site. The immunofluorescent visualization showed that the distribution of mutant STK11 was different from that of wild‐type STK11, suggesting the mutation may be the causative effect on the dysfunction of the mutant protein. The rescue experiments indicated that the failure of suppressing mTOR phosphorylation by shRNA STK11 could be eliminated by supply of wild‐type STK11 rather than mutant STK11. CONCLUSION: We identified a novel heterozygous mutation (c.921‐2 A>C) in the STK11 in a Chinese PJS family. Haploinsufficiency of STK11 might contribute to the pathogenesis of the disease. |
format | Online Article Text |
id | pubmed-8404226 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84042262021-09-03 A novel pathogenic splice site variation in STK11 gene results in Peutz–Jeghers syndrome Zhao, Na Wu, Huizhi Li, Ping Wang, Yuxian Dong, Li Xiao, Han Wu, Changxin Mol Genet Genomic Med Original Articles BACKGROUND: Peutz–Jeghers syndrome (PJS) is a rare autosomal dominantly inherited disease resulting in multiple gastrointestinal hamartomatous polyps, mucocutaneous pigmentation, and an increased risk of various types of cancer, and is caused by variations in the serine/threonine protein kinase STK11 (LKB1). METHODS: STK11 gene variations were identified by analyzing STK11 cDNA and genomic DNA. Minigenes carrying the wild‐type and mutant sequences were subjected to in vitro splicing assay to dissect the features of these mutations. The different distribution of wild‐type and mutant protein in cells were tested by Immunofluorescence assays and the functional analysis of the variation were performed using Western blot. RESULTS: A novel heterozygous splice‐acceptor site variation (c.921‐2 A>C) in intron 7 of the STK11 gene which is co‐segregates with the PJS phenotypes in the proband and all the affected family members and three previously reported variations (c.180C>G, c.580G>A, c.787_790del) were identified in the four families. The c.921‐2 A>C substitution resulted in the inactivation of a splice site and the utilization of a cryptic splice acceptor site surrounding exon 8, generating three different aberrant RNA transcripts, leading to frameshift translation and protein truncation. The results of minigenes indicated that the spliceosome can use a variety of 3’ acceptor site sequences to pair with a given 5’ donor site. The immunofluorescent visualization showed that the distribution of mutant STK11 was different from that of wild‐type STK11, suggesting the mutation may be the causative effect on the dysfunction of the mutant protein. The rescue experiments indicated that the failure of suppressing mTOR phosphorylation by shRNA STK11 could be eliminated by supply of wild‐type STK11 rather than mutant STK11. CONCLUSION: We identified a novel heterozygous mutation (c.921‐2 A>C) in the STK11 in a Chinese PJS family. Haploinsufficiency of STK11 might contribute to the pathogenesis of the disease. John Wiley and Sons Inc. 2021-06-03 /pmc/articles/PMC8404226/ /pubmed/34080793 http://dx.doi.org/10.1002/mgg3.1729 Text en © 2021 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Articles Zhao, Na Wu, Huizhi Li, Ping Wang, Yuxian Dong, Li Xiao, Han Wu, Changxin A novel pathogenic splice site variation in STK11 gene results in Peutz–Jeghers syndrome |
title | A novel pathogenic splice site variation in STK11 gene results in Peutz–Jeghers syndrome |
title_full | A novel pathogenic splice site variation in STK11 gene results in Peutz–Jeghers syndrome |
title_fullStr | A novel pathogenic splice site variation in STK11 gene results in Peutz–Jeghers syndrome |
title_full_unstemmed | A novel pathogenic splice site variation in STK11 gene results in Peutz–Jeghers syndrome |
title_short | A novel pathogenic splice site variation in STK11 gene results in Peutz–Jeghers syndrome |
title_sort | novel pathogenic splice site variation in stk11 gene results in peutz–jeghers syndrome |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404226/ https://www.ncbi.nlm.nih.gov/pubmed/34080793 http://dx.doi.org/10.1002/mgg3.1729 |
work_keys_str_mv | AT zhaona anovelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT wuhuizhi anovelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT liping anovelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT wangyuxian anovelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT dongli anovelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT xiaohan anovelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT wuchangxin anovelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT zhaona novelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT wuhuizhi novelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT liping novelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT wangyuxian novelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT dongli novelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT xiaohan novelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome AT wuchangxin novelpathogenicsplicesitevariationinstk11generesultsinpeutzjegherssyndrome |