Cargando…
A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis
BACKGROUND: There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluat...
Autores principales: | Badam, Tejaswi V. S., de Weerd, Hendrik A., Martínez-Enguita, David, Olsson, Tomas, Alfredsson, Lars, Kockum, Ingrid, Jagodic, Maja, Lubovac-Pilav, Zelmina, Gustafsson, Mika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404328/ https://www.ncbi.nlm.nih.gov/pubmed/34461822 http://dx.doi.org/10.1186/s12864-021-07935-1 |
Ejemplares similares
-
MODalyseR—a novel software for inference of disease module hub regulators identified a putative multiple sclerosis regulator supported by independent eQTL data
por: de Weerd, Hendrik A, et al.
Publicado: (2022) -
Whole-genome sequencing and gene network modules predict gemcitabine/carboplatin-induced myelosuppression in non-small cell lung cancer patients
por: Björn, Niclas, et al.
Publicado: (2020) -
Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes
por: Riquelme Medina, Ignacio, et al.
Publicado: (2016) -
ComHub: Community predictions of hubs in gene regulatory networks
por: Åkesson, Julia, et al.
Publicado: (2021) -
miRFA: an automated pipeline for microRNA functional analysis with correlation support from TCGA and TCPA expression data in pancreatic cancer
por: Borgmästars, Emmy, et al.
Publicado: (2019)